diff options
| -rw-r--r-- | src/main.py | 164 | 
1 files changed, 164 insertions, 0 deletions
| diff --git a/src/main.py b/src/main.py new file mode 100644 index 0000000..69a612a --- /dev/null +++ b/src/main.py @@ -0,0 +1,164 @@ +import numpy as np +import matplotlib.pyplot as plt + +PI = np.pi + +np.set_printoptions(precision=2, floatmode="maxprec", suppress=True) +figure, axes = plt.subplots() + + +Re = 100 +nu = 1 / Re +domain_size = (1, 2) +step = 0.05 +N = int(domain_size[1] / step) +M = int(domain_size[0] / step) +shape = (N, M) +alpha = 0.8  # Coefficient + +t_m = 1 +h_c = 0.5 + +# Staggered vars +u = np.zeros(shape=shape, dtype=float) +u_star = np.zeros(shape=shape, dtype=float) +u_new = np.zeros(shape=shape, dtype=float) + +v = np.zeros(shape=shape, dtype=float) +v_star = np.zeros(shape=shape, dtype=float) +v_new = np.zeros(shape=shape, dtype=float) + +p = np.zeros(shape=shape, dtype=float) +p_star = np.zeros(shape=shape, dtype=float) +p_new = np.zeros(shape=shape, dtype=float) + +d_e = np.zeros(shape=shape, dtype=float) +d_n = np.zeros(shape=shape, dtype=float) +b = np.zeros(shape=shape, dtype=float) + + +def u_boundary(t, y): +    def f(t): +        return 1 if t_m < t else 0.5 * (np.sin(0.5 * PI * (2 * t / t_m - 1)) + 1) +    return 6 * f(t) * (y - h_c) * (1 - y) / (1 - h_c)**2 + + +# Loop +error = 1 +precision = 10 ** -7 + +t = 0.15 + +iteration = 0 +while error > precision: +    iteration += 1 +    # Inflow boundary condition +    for i in range(N): +        y = i * step +        u_star[i][0] = u_boundary(t, y) +        v_star[i][0] = 0 + +    # Sides boundary conditions +    for j in range(M): +        v_star[0][j] = 0 +        v_star[N - 1][j] = 0 +        u_star[0][j] = 0 +        u_star[N - 1][j] = 0 + +    # x-momentum +    for i in range(1, N - 1): +        for j in range(1, M - 1): +            u_E = 0.5 * (u[i][j] + u[i][j + 1]) +            u_W = 0.5 * (u[i][j] + u[i][j - 1]) +            v_N = 0.5 * (v[i - 1][j] + v[i - 1][j + 1]) +            v_S = 0.5 * (v[i][j] + v[i][j + 1]) + +            a_E = -0.5 * u_E * step + nu +            a_W = +0.5 * u_W * step + nu +            a_N = -0.5 * v_N * step + nu +            a_S = +0.5 * v_S * step + nu + +            a_e = 0.5 * step * (u_E - u_W + v_N - v_S) + 4 * nu +            A_e = -step + +            d_e[i][j] = A_e / a_e + +            u_star[i][j] = (a_E * u[i][j + 1] + a_W * u[i][j - 1] + a_N * u[i - 1][j] + a_S * u[i + 1][j]) / a_e +            + d_e[i][j] * (p[i][j + 1] - p[i][j]) + +    # y-momentum +    for i in range(1, N - 1): +        for j in range(1, M - 1): +            u_E = 0.5 * (u[i][j] + u[i + 1][j]) +            u_W = 0.5 * (u[i][j - 1] + u[i + 1][j - 1]) +            v_N = 0.5 * (v[i - 1][j] + v[i][j]) +            v_S = 0.5 * (v[i][j] + v[i + 1][j]) + +            a_E = -0.5 * u_E * step + nu +            a_W = +0.5 * u_W * step + nu +            a_N = -0.5 * v_N * step + nu +            a_S = +0.5 * v_S * step + nu + +            a_n = 0.5 * step * (u_E - u_W + v_N - v_S) + 4 * nu +            A_n = -step + +            d_n[i][j] = A_n / a_n + +            v_star[i][j] = (a_E * v[i][j + 1] + a_W * v[i][j - 1] + a_N * v[i - 1][j] + a_S * v[i + 1][j]) / a_n +            + d_n[i][j] * (p[i][j] - p[i + 1][j]) + +    # Pressure correction +    p_c = np.zeros(shape=shape, dtype=float) +    for i in range(1, N - 1): +        for j in range(1, M - 1): +            a_E = -d_e[i][j] * step +            a_W = -d_e[i][j-1] * step +            a_N = -d_n[i-1][j] * step +            a_S = -d_n[i][j] * step +            a_P = a_E + a_W + a_N + a_S +            b[i][j] = step * (-(u_star[i][j] - u_star[i][j-1]) + (v_star[i][j] - v_star[i-1][j])) + +            p_c[i][j] = (a_E * p_c[i][j+1] + a_W * p_c[i][j-1] + a_N * p_c[i-1][j] + a_S * p_c[i+1][j] + b[i][j]) / a_P +    p_new = p + p_c * alpha + +    # Pressure boundaries +    for i in range(N - 1): +        p_new[i][0] = p_new[i][1] +        p_new[i][M - 1] = p_new[i][M - 2] +    for j in range(M - 1): +        p_new[0][j] = p_new[1][j] +        p_new[N - 1][j] = p_new[N - 2][j] + +    # Velocity correction +    for i in range(1, N - 1): +        for j in range(1, M - 1): +            u_new[i][j] = u_star[i][j] + alpha * d_e[i][j] * (p_c[i + 1][j] - p_c[i][j]) +            v_new[i][j] = v_star[i][j] + alpha * d_n[i][j] * (p_c[i][j] - p_c[i + 1][j]) + +    # Continuity residual as error measure +    error = 0 +    for i in range(N): +        for j in range(M): +            error += abs(b[i][j]) + +    u = u_new +    v = v_new +    p = p_new + +    # Plotting +    print(u) +    print(v) +    print(p) +    print(error) +    x, y = np.meshgrid( +        np.linspace(0, domain_size[1], shape[1]), +        np.linspace(0, domain_size[0], shape[0]), +    ) + +    if iteration % 5 == 0: +        axes.pcolormesh(x, y, p, cmap='hot') +        plt.quiver(x, y, u, v, scale=1) +        plt.pause(0.0001) + + +plt.show() | 
