summaryrefslogtreecommitdiff
path: root/src/simple.py
diff options
context:
space:
mode:
Diffstat (limited to 'src/simple.py')
-rw-r--r--src/simple.py183
1 files changed, 73 insertions, 110 deletions
diff --git a/src/simple.py b/src/simple.py
index b54cd38..0e103ea 100644
--- a/src/simple.py
+++ b/src/simple.py
@@ -27,120 +27,89 @@ class SIMPLE:
self.d_n = np.zeros(shape=self.v.shape, dtype=float)
self.b = np.zeros(shape=shape, dtype=float)
- def allocate_field(self, random=False):
- if random:
- return np.random.rand(*self.shape)
- return np.zeros(shape=self.shape, dtype=float)
-
- def apply_inflow_boundary(self):
- for i in range(1, self.shape[0] - 1):
- self.u_star[i][0] = 1
- self.v_star[i][0] = 0
-
- def apply_outflow_boundary(self):
- for i in range(0, self.shape[0]):
- self.u_star[i][-1] = self.u_star[i][-2];
-
def assert_positive(self, value):
'''Assert that the value is nearly positive'''
- assert value > -1, f'WARNING: Value must be positive: {value}'
+ assert value > -0.01, f'WARNING: Value must be positive: {value}'
return value
- def grid(self):
- '''Iterator over all grid points, excluding the obstacle'''
- for i in range(1, self.shape[0] - 1):
- for j in range(1, self.shape[1] - 1):
- # if i > self.bfs_node_size[0] or j > self.bfs_node_size[1]:
- yield (i, j)
-
def solve_momentum_equations(self):
# Momentum along X direction
for i in range(1, self.u.shape[0] - 1):
for j in range(1, self.u.shape[1] - 1):
- u_W = 0.5 * (self.u[i][j] + self.u[i][j - 1])
- u_E = 0.5 * (self.u[i][j] + self.u[i][j + 1])
+ if i >= self.bfs_shape[0] or j >= self.bfs_shape[1]:
+ u_W = 0.5 * (self.u[i][j] + self.u[i][j - 1])
+ u_E = 0.5 * (self.u[i][j] + self.u[i][j + 1])
- v_S = 0.5 * (self.v[i][j - 1] + self.v[i][j])
- v_N = 0.5 * (self.v[i + 1][j - 1] + self.v[i + 1][j])
+ v_S = 0.5 * (self.v[i][j - 1] + self.v[i][j])
+ v_N = 0.5 * (self.v[i + 1][j - 1] + self.v[i + 1][j])
- a_E = self.assert_positive(-0.5 * u_E * self.step + self.nu)
- a_W = self.assert_positive(+0.5 * u_W * self.step + self.nu)
- a_N = self.assert_positive(-0.5 * v_N * self.step + self.nu)
- a_S = self.assert_positive(+0.5 * v_S * self.step + self.nu)
+ a_E = self.assert_positive(-0.5 * u_E * self.step + self.nu)
+ a_W = self.assert_positive(+0.5 * u_W * self.step + self.nu)
+ a_N = self.assert_positive(-0.5 * v_N * self.step + self.nu)
+ a_S = self.assert_positive(+0.5 * v_S * self.step + self.nu)
- a_e = 0.5 * self.step * (u_E - u_W + v_N - v_S) + 4 * self.nu
- A_e = -self.step
+ a_e = 0.5 * self.step * (u_E - u_W + v_N - v_S) + 4 * self.nu
+ A_e = -self.step
- self.d_e[i][j] = A_e / a_e
+ self.d_e[i][j] = A_e / a_e
- self.u_star[i][j] = (
- a_E * self.u[i][j + 1] +
- a_W * self.u[i][j - 1] +
- a_N * self.u[i + 1][j] +
- a_S * self.u[i - 1][j]
- ) / a_e + self.d_e[i][j] * (self.p_star[i][j - 1] - self.p_star[i][j]) # p - p_e
+ self.u_star[i][j] = (
+ a_E * self.u[i][j + 1] +
+ a_W * self.u[i][j - 1] +
+ a_N * self.u[i + 1][j] +
+ a_S * self.u[i - 1][j]
+ ) / a_e + self.d_e[i][j] * (self.p_star[i][j - 1] - self.p_star[i][j]) # p - p_e
# Momentum along Y direction
for i in range(1, self.v.shape[0] - 1):
for j in range(1, self.v.shape[1] - 1):
- u_W = 0.5 * (self.u[i - 1][j] + self.u[i][j])
- u_E = 0.5 * (self.u[i - 1][j + 1] + self.u[i][j + 1])
-
- v_N = 0.5 * (self.v[i][j] + self.v[i + 1][j])
- v_S = 0.5 * (self.v[i][j] + self.v[i - 1][j])
-
- a_E = self.assert_positive(-0.5 * u_E * self.step + self.nu)
- a_W = self.assert_positive(+0.5 * u_W * self.step + self.nu)
- a_N = self.assert_positive(-0.5 * v_N * self.step + self.nu)
- a_S = self.assert_positive(+0.5 * v_S * self.step + self.nu)
-
- a_n = 0.5 * self.step * (u_E - u_W + v_N - v_S) + 4 * self.nu
- A_n = -self.step
-
- self.d_n[i][j] = A_n / a_n
-
- self.v_star[i][j] = (
- a_E * self.v[i][j + 1] +
- a_W * self.v[i][j - 1] +
- a_N * self.v[i + 1][j] +
- a_S * self.v[i - 1][j]
- ) / a_n + self.d_n[i][j] * (self.p_star[i - 1][j] - self.p_star[i][j]) # p - p_n
-
- def apply_sides_boundary(self):
- for j in range(self.shape[1]):
- self.v_star[0][j] = 0
- self.v_star[-2][j] = 0
- # WORKSNICE: self.v_star[-3][j] = 0
-
- def apply_bfs_boundary(self):
- '''Apply Backwards Facing Step boundary conditions'''
- for i in range(self.bfs_node_size[0]):
- self.u_star[i][self.bfs_node_size[1]] = 0
- for j in range(self.bfs_node_size[1]):
- self.v_star[self.bfs_node_size[0]][j] = 0
+ if i >= self.bfs_shape[0] or j >= self.bfs_shape[1]:
+ u_W = 0.5 * (self.u[i - 1][j] + self.u[i][j])
+ u_E = 0.5 * (self.u[i - 1][j + 1] + self.u[i][j + 1])
+
+ v_N = 0.5 * (self.v[i][j] + self.v[i + 1][j])
+ v_S = 0.5 * (self.v[i][j] + self.v[i - 1][j])
+
+ a_E = self.assert_positive(-0.5 * u_E * self.step + self.nu)
+ a_W = self.assert_positive(+0.5 * u_W * self.step + self.nu)
+ a_N = self.assert_positive(-0.5 * v_N * self.step + self.nu)
+ a_S = self.assert_positive(+0.5 * v_S * self.step + self.nu)
+
+ a_n = 0.5 * self.step * (u_E - u_W + v_N - v_S) + 4 * self.nu
+ A_n = -self.step
+
+ self.d_n[i][j] = A_n / a_n
+
+ self.v_star[i][j] = (
+ a_E * self.v[i][j + 1] +
+ a_W * self.v[i][j - 1] +
+ a_N * self.v[i + 1][j] +
+ a_S * self.v[i - 1][j]
+ ) / a_n + self.d_n[i][j] * (self.p_star[i - 1][j] - self.p_star[i][j]) # p - p_n
def correct_pressure(self):
self.p_prime = np.zeros(shape=self.p.shape, dtype=float)
for i in range(1, self.p.shape[0] - 1):
for j in range(1, self.p.shape[1] - 1):
- a_E = 0 if j == self.p.shape[1] - 1 else self.assert_positive(-self.d_e[i][j] * self.step)
- a_W = 0 if j == 1 else self.assert_positive(-self.d_e[i][j+1] * self.step)
- a_N = 0 if i == self.p.shape[0] - 1 else self.assert_positive(-self.d_n[i+1][j] * self.step)
- a_S = 0 if i == 1 else self.assert_positive(-self.d_n[i][j] * self.step)
- a_P = a_E + a_W + a_N + a_S
-
- self.b[i][j] = self.step * (
- -(self.u_star[i][j] - self.u_star[i][j+1])
- + (self.v_star[i+1][j] - self.v_star[i][j])
- )
-
- self.p_prime[i][j] = (
- (a_E * self.p_prime[i][j+1] if a_E > 0 else 0) +
- (a_W * self.p_prime[i][j-1] if a_W > 0 else 0) +
- (a_N * self.p_prime[i+1][j] if a_N > 0 else 0) +
- (a_S * self.p_prime[i-1][j] if a_S > 0 else 0) +
- self.b[i][j]
- ) / a_P
+ if i >= self.bfs_shape[0] or j >= self.bfs_shape[1]:
+ a_E = 0 if j == self.p.shape[1] - 1 else self.assert_positive(-self.d_e[i][j] * self.step)
+ a_W = 0 if j == 1 else self.assert_positive(-self.d_e[i][j+1] * self.step)
+ a_N = 0 if i == self.p.shape[0] - 1 else self.assert_positive(-self.d_n[i+1][j] * self.step)
+ a_S = 0 if i == 1 else self.assert_positive(-self.d_n[i][j] * self.step)
+ a_P = a_E + a_W + a_N + a_S
+
+ self.b[i][j] = self.step * (
+ -(self.u_star[i][j] - self.u_star[i][j+1])
+ + (self.v_star[i+1][j] - self.v_star[i][j])
+ )
+
+ self.p_prime[i][j] = (
+ (a_E * self.p_prime[i][j+1] if a_E > 0 else 0) +
+ (a_W * self.p_prime[i][j-1] if a_W > 0 else 0) +
+ (a_N * self.p_prime[i+1][j] if a_N > 0 else 0) +
+ (a_S * self.p_prime[i-1][j] if a_S > 0 else 0) +
+ self.b[i][j]
+ ) / a_P
self.p = self.p_star + self.p_prime * self.alpha
self.p_star = self.p
@@ -158,37 +127,31 @@ class SIMPLE:
self.solve_momentum_equations()
# Boundary
- self.u_star[:, 0] = -self.u_star[:, 1]
+ self.u_star[:, 0] = 2 - self.u_star[:, 1]
self.v_star[:, 0] = 0
- self.u_star[:, -1] = -self.u_star[:, -2]
- self.v_star[:, -1] = 0
+ self.v_star[-2, :] = -self.v_star[-1, :]
+ self.v_star[1, :] = -self.v_star[0, :]
- self.u_star[-1, :] = 1
- self.v_star[-1, :] = -self.v_star[-2, :]
+ self.v_star[self.bfs_shape[0], :self.bfs_shape[1]] = self.v_star[self.bfs_shape[0] - 1, :self.bfs_shape[1]]
+ self.u_star[:self.bfs_shape[0], self.bfs_shape[1]] = self.u_star[:self.bfs_shape[0], self.bfs_shape[1] - 1]
- self.u_star[0, :] = 0
- self.v_star[0, :] = -self.v_star[1, :]
-
- self.p_star[0, 0] = 0
+ self.p_star[:self.bfs_shape[0], :self.bfs_shape[1]] = 0
self.correct_pressure()
self.correct_velocities()
# Boundary enforce
- self.u[:, 0] = -self.u[:, 1]
+ self.u[:, 0] = 2 - self.u[:, 1]
self.v[:, 0] = 0
- self.u[:, -1] = -self.u[:, -2]
- self.v[:, -1] = 0
-
- self.u[-1, :] = 1
- self.v[-1, :] = -self.v[-2, :]
+ self.v[-2, :] = -self.v[-1, :]
+ self.v[1, :] = -self.v[0, :]
- self.u[0, :] = 0
- self.v[0, :] = -self.v[1, :]
+ self.v[self.bfs_shape[0], :self.bfs_shape[1]] = self.v[self.bfs_shape[0] - 1, :self.bfs_shape[1]]
+ self.u[:self.bfs_shape[0], self.bfs_shape[1]] = self.u[:self.bfs_shape[0], self.bfs_shape[1] - 1]
- self.p[0, 0] = 0
+ self.p[:self.bfs_shape[0], :self.bfs_shape[1]] = 0
def avg_error(self):
return np.absolute(self.b).sum()