import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Rectangle figure, axes = plt.subplots() class SIMPLE: def __init__(self, domain_size, bfs_size, step, Re, alpha=0.8): np.set_printoptions(precision=2, floatmode="maxprec", suppress=True) self.Re = Re self.nu = 1 / Re self.alpha = alpha self.domain_size = domain_size self.bfs_size = bfs_size self.step = step self.shape = tuple(int(x / step) for x in domain_size) self.x, self.y = np.meshgrid( np.linspace(0, domain_size[1], self.shape[1]), np.linspace(0, domain_size[0], self.shape[0]), ) self.plt = None self.colorbar = None self.patch = None def allocate_field(self, random=False): if random: return np.random.rand(*self.shape) return np.zeros(shape=self.shape, dtype=float) def prep(self): self.u = self.allocate_field() self.u_star = self.allocate_field() self.v = self.allocate_field() self.v_star = self.allocate_field() self.p = self.allocate_field() self.p_star = self.allocate_field(True) self.p_prime = self.allocate_field() self.d_e = self.allocate_field() self.d_n = self.allocate_field() self.b = self.allocate_field() def apply_inflow_boundary(self): for i in range(self.shape[0]): self.u_star[i][0] = 1 self.v_star[i][0] = 0 def assert_rule2(self, value): '''Assert that the value is nearly positive''' if value < -0.1: # TODO: assert print(f'WARNING: Value must be positive: {value}') return value def solve_momentum_equations(self): # Momentum along X direction for i in range(1, self.shape[0] - 1): for j in range(1, self.shape[1] - 1): u_E = 0.5 * (self.u[i][j] + self.u[i][j + 1]) u_W = 0.5 * (self.u[i][j] + self.u[i][j - 1]) v_N = 0.5 * (self.v[i - 1][j] + self.v[i - 1][j + 1]) v_S = 0.5 * (self.v[i][j] + self.v[i][j + 1]) a_E = self.assert_rule2(-0.5 * u_E * self.step + self.nu) a_W = self.assert_rule2(+0.5 * u_W * self.step + self.nu) a_N = self.assert_rule2(-0.5 * v_N * self.step + self.nu) a_S = self.assert_rule2(+0.5 * v_S * self.step + self.nu) a_e = 0.5 * self.step * (u_E - u_W + v_N - v_S) + 4 * self.nu A_e = -self.step self.d_e[i][j] = A_e / a_e self.u_star[i][j] = ( a_E * self.u[i][j + 1] + a_W * self.u[i][j - 1] + a_N * self.u[i - 1][j] + a_S * self.u[i + 1][j] ) / a_e + self.d_e[i][j] * (self.p_star[i][j + 1] - self.p_star[i][j]) # Momentum along Y direction for i in range(1, self.shape[0] - 1): for j in range(1, self.shape[1] - 1): u_E = 0.5 * (self.u[i][j] + self.u[i + 1][j]) u_W = 0.5 * (self.u[i][j - 1] + self.u[i + 1][j - 1]) v_N = 0.5 * (self.v[i - 1][j] + self.v[i][j]) v_S = 0.5 * (self.v[i][j] + self.v[i + 1][j]) a_E = self.assert_rule2(-0.5 * u_E * self.step + self.nu) a_W = self.assert_rule2(+0.5 * u_W * self.step + self.nu) a_N = self.assert_rule2(-0.5 * v_N * self.step + self.nu) a_S = self.assert_rule2(+0.5 * v_S * self.step + self.nu) a_n = 0.5 * self.step * (u_E - u_W + v_N - v_S) + 4 * self.nu A_n = -self.step self.d_n[i][j] = A_n / a_n self.v_star[i][j] = ( a_E * self.v[i][j + 1] + a_W * self.v[i][j - 1] + a_N * self.v[i - 1][j] + a_S * self.v[i + 1][j] ) / a_n + self.d_n[i][j] * (self.p_star[i][j] - self.p_star[i + 1][j]) def apply_sides_boundary(self): for j in range(self.shape[1]): self.v_star[0][j] = 0 self.u_star[0][j] = 0 self.u_star[self.shape[0] - 1][j] = 0 self.v_star[self.shape[0] - 1][j] = 0 def apply_bfs_boundary(self): '''Apply Backwards Facing Step boundary conditions''' for i in range(int(self.bfs_size[0] / self.step) + 1): for j in range(int(self.bfs_size[1] / self.step) + 1): self.u_star[i][j] = 0 self.v_star[i][j] = 0 def correct_pressure(self): self.p_prime = self.allocate_field() for i in range(1, self.shape[0] - 1): for j in range(1, self.shape[1] - 1): a_E = self.assert_rule2(-self.d_e[i][j] * self.step) a_W = self.assert_rule2(-self.d_e[i][j-1] * self.step) a_N = self.assert_rule2(-self.d_n[i-1][j] * self.step) a_S = self.assert_rule2(-self.d_n[i][j] * self.step) a_P = a_E + a_W + a_N + a_S self.b[i][j] = self.step * ( -(self.u_star[i][j] - self.u_star[i][j-1]) + (self.v_star[i][j] - self.v_star[i-1][j]) ) self.p_prime[i][j] = ( a_E * self.p_prime[i][j+1] + a_W * self.p_prime[i][j-1] + a_N * self.p_prime[i-1][j] + a_S * self.p_prime[i+1][j] + self.b[i][j] ) / a_P self.p = self.p_star + self.p_prime * self.alpha self.p_star = self.p def correct_velocities(self): for i in range(1, self.shape[0] - 1): for j in range(1, self.shape[1] - 1): self.u[i][j] = self.u_star[i][j] + self.d_e[i][j] * (self.p_prime[i][j + 1] - self.p_prime[i][j]) self.v[i][j] = self.v_star[i][j] + self.d_n[i][j] * (self.p_prime[i][j] - self.p_prime[i + 1][j]) def apply_outflow_boundary(self): for i in range(self.shape[0]): self.u[i][self.shape[1] - 1] = self.u[i][self.shape[1] - 2] self.v[i][self.shape[1] - 1] = self.v[i][self.shape[1] - 2] def iterate(self): self.apply_inflow_boundary() self.solve_momentum_equations() self.apply_sides_boundary() self.apply_bfs_boundary() self.correct_pressure() self.correct_velocities() # self.apply_outflow_boundary() self.apply_bfs_boundary() # Is it needed? def plot(self, normalize=False, density=1): if self.patch: self.patch.remove() if self.colorbar: self.colorbar.remove() if self.plt: self.plt.remove() self.patch = axes.add_patch(Rectangle((0, 0), *reversed(self.bfs_size))) u, v = self.u, self.v if normalize: factor = np.sqrt(u ** 2 + v ** 2) u = u / factor v = v / factor self.plt = plt.quiver( self.x[::density, ::density], self.y[::density, ::density], u[::density, ::density], v[::density, ::density], self.p[::density, ::density], scale=30, cmap='inferno' ) self.colorbar = plt.colorbar() plt.pause(0.0001)