aboutsummaryrefslogtreecommitdiff
path: root/src/grossmeister
diff options
context:
space:
mode:
Diffstat (limited to 'src/grossmeister')
-rw-r--r--src/grossmeister/search.rs58
1 files changed, 29 insertions, 29 deletions
diff --git a/src/grossmeister/search.rs b/src/grossmeister/search.rs
index 378349c..d0fddbb 100644
--- a/src/grossmeister/search.rs
+++ b/src/grossmeister/search.rs
@@ -246,43 +246,46 @@ impl Grossmeister {
pv
}
+ /// Memory-enhanced Test Driver
+ /// Given a guess score (from previous iteration), use it for series of small-window searches
+ fn mtdf(&mut self, score_guess: Score, depth: u8) -> Score {
+ let window_size = 1.00;
+ let mut score = score_guess;
+ let mut lowerbound = -INFINITY;
+ let mut upperbound = INFINITY;
+
+ while lowerbound < upperbound {
+ let beta = score + if score == lowerbound {
+ window_size
+ } else {
+ 0.0
+ };
+
+ score = self.negamax_search(beta - window_size, beta, depth, 0);
+
+ if score < beta {
+ upperbound = score
+ } else {
+ lowerbound = score
+ }
+ }
+
+ score
+ }
+
pub fn iterative_deepening(&mut self, max_depth: u8) -> (Score, Vec<Move>) {
let mut best_score = 0.0;
let mut pv = Vec::new();
-
- let mut depth = 1;
- let mut alpha = -INFINITY;
- let mut beta = INFINITY;
- let window_size = 0.25;
- let mut gradual_widening_counter = 0;
+ let mut depth = 0;
while depth <= max_depth {
- if self.debug {
- println!("info string window {:?}", (alpha, beta));
- }
-
- let score = self.negamax_search(alpha, beta, depth, 0);
+ let score = self.mtdf(best_score, depth);
if self.should_halt.load(std::sync::atomic::Ordering::SeqCst) {
println!("info string halting search");
break;
}
- if score <= alpha { // Alpha-cutoff
- gradual_widening_counter += 1;
- beta = alpha + window_size * 0.1;
- alpha = score - window_size * 2.0f32.powi(gradual_widening_counter);
- println!("info depth {} score upperbound {:.0}", depth, beta * 100.0);
- continue;
- }
- if score >= beta { // Beta-cutoff
- gradual_widening_counter += 1;
- alpha = beta - window_size * 0.1;
- beta = score + window_size * 2.0f32.powi(gradual_widening_counter);
- println!("info depth {} score lowerbound {:.0}", depth, alpha * 100.0);
- continue;
- }
-
best_score = score;
pv = self.reconstruct_pv(depth);
@@ -305,9 +308,6 @@ impl Grossmeister {
println!();
depth += 1;
- gradual_widening_counter = 0;
- alpha = score - window_size;
- beta = score + window_size;
// If our score is mate in N, we break at depth N
if depth as Score >= SCORE_MATE - score.abs() {