1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
|
use std::{time::{Instant, Duration}, f32::INFINITY, cmp::Ordering};
use crate::{bitboard::pop_count, board::*};
use super::ttable::{NodeType, TranspositionTableItem};
static A_FILE: Bitboard = 0x0101010101010101;
#[derive(Debug, Default, PartialEq)]
pub struct PerftResult {
leaf_nodes: u64,
captures: u64,
en_passants: u64,
castles: u64,
checks: u64,
}
impl Board {
pub fn perft(&mut self, depth: u8, print: bool) -> PerftResult {
let mut result = PerftResult::default();
if depth == 0 {
result.leaf_nodes = 1;
return result;
}
let color = self.color();
let moves = self.generate_pseudolegal_moves(color);
if print {
println!("Running perft for depth {}. Color to move is {:?}\n{} moves available", depth, color, moves.len());
println!("{} moves available", moves.len());
}
for mov in moves {
let ep_target_before = self.ep_target.clone();
let castling_rights_before = self.castling_rights.clone();
let hash_before = self.hash.clone();
let captured_piece = self.make_move(mov);
// King can not be in check after our own move
if !self.is_king_in_check(color) {
if depth == 1 {
match mov.kind {
MoveKind::Capture => {
result.captures += 1;
}
MoveKind::EnPassant => {
result.en_passants += 1;
result.captures += 1;
}
MoveKind::Castle => {
result.castles += 1;
}
_ => {}
}
if self.is_king_in_check(color.flip()) {
result.checks += 1;
}
}
if print {
println!("{:?}", mov);
self.print();
}
let subtree_result = self.perft(depth - 1, print);
result.leaf_nodes += subtree_result.leaf_nodes;
result.captures += subtree_result.captures;
result.checks += subtree_result.checks;
result.castles += subtree_result.castles;
result.en_passants += subtree_result.en_passants;
}
self.unmake_move(mov, captured_piece, ep_target_before, castling_rights_before, hash_before);
}
if print {
println!("Found {} leaf nodes in this subtree (depth {})", result.leaf_nodes, depth);
}
result
}
/// Compute material advantage relative to the current player
pub fn material(&self, color: Color) -> f32 {
let mut material = 0f32;
for (piece_index, bitboard) in self.pieces_by_color(color).iter().enumerate() {
let piece_type = PieceType::from(piece_index);
material += match piece_type {
PieceType::Pawn => {
match color {
Color::White => {
serialize_bitboard(*bitboard).iter().fold(0., |acc, square| {
acc + match (*square).rank() {
6 => 3.,
5 => 2.,
_ => 1.,
}
})
},
Color::Black => {
serialize_bitboard(*bitboard).iter().fold(0., |acc, square| {
acc + match (*square).rank() {
1 => 3.,
2 => 2.,
_ => 1.,
}
})
}
}
}
_ => {
piece_type.static_eval() * pop_count(*bitboard) as f32
}
};
}
material
}
/// Returns sum of the doubled, blocked and isolated pawns
/// The greater result is, the worse is the pawn structure
pub fn pawn_structure_penalty(&self, color: Color) -> f32 {
let mut result = 0.0;
let pawns = match color {
Color::White => self.pieces[PieceType::Pawn as usize],
Color::Black => self.pieces[PieceType::PawnBlack as usize],
};
for file in 0..8 {
let file_mask = A_FILE << file;
let pawns_on_file = pop_count(pawns & file_mask) as f32;
// Doubled pawns (-1 because one pawn on a file is ok)
result += (pawns_on_file - 1.).max(0.0);
// Isolated pawns (no pawns on neighbor files)
if [
A_FILE << (file - 1).max(0), // File to the left (if any)
A_FILE << (file + 1).min(7), // File to the right (if any)
].iter().all(|file| file & pawns == 0) {
result += pawns_on_file;
}
}
// Blocked pawns
let blocked_mask = match color {
Color::White => self.occupancy >> 8,
Color::Black => self.occupancy << 8,
};
result += pop_count(pawns & blocked_mask) as f32;
result
}
/// Returns the weighted sum of distances from attacking pieces to a king
/// The higher this value, the safer is the king
pub fn king_tropism(&self, color: Color) -> f32 {
let mut result = 0.0;
let king_square = bitscan(match color {
Color::White => self.pieces[PieceType::King as usize],
Color::Black => self.pieces[PieceType::KingBlack as usize],
});
for (piece_type, bitboard) in self.pieces_by_color(color.flip()).iter().enumerate() {
if piece_type != PieceType::King as usize && piece_type != PieceType::Pawn as usize {
for square in serialize_bitboard(*bitboard) {
let distance =
(king_square.rank() as f32 - square.rank() as f32).abs() +
(king_square.file() as f32 - square.file() as f32).abs();
result += distance / PieceType::from(piece_type).static_eval();
}
}
}
result
}
/// Evaluate a position relative to the current player
pub fn evaluate(&self, precomputed_mobility: Option<f32>) -> f32 {
let color = self.color();
let opponent_color = color.flip();
let opponent_mobility = self.mobility(opponent_color);
let player_mobility = match precomputed_mobility {
Some(m) => m,
None => self.mobility(color),
};
let mobility_advantage = player_mobility - opponent_mobility as f32;
let opponent_material = self.material(opponent_color);
let material_advantage = self.material(color) - opponent_material;
let pawn_structure_penalty = self.pawn_structure_penalty(color) - self.pawn_structure_penalty(opponent_color);
let king_tropism_penalty = self.king_tropism(color) - self.king_tropism(opponent_color);
material_advantage + 0.1 * mobility_advantage - 0.5 * pawn_structure_penalty + king_tropism_penalty * opponent_material / 100.0
}
/// Evaluate move for move ordering, prioritizing efficient captures
/// where low-value pieces capture high-value pieces
fn eval_move(&self, m: Move) -> f32 {
if m.is_tactical() {
let [source_eval, target_eval] = [m.source, m.target]
.map(|sq| self.piece_by_square(sq))
.map(|p| {
match p {
Some(p) => p.static_eval(),
None => 0.,
}
});
return 2. * target_eval - source_eval
}
0.0
}
pub fn hash_move(&self) -> Option<Move> {
match self.transposition_table[(self.hash % TTABLE_SIZE) as usize] {
Some(item) => {
if item.hash == self.hash {
return Some(item.best_move)
}
None
}
None => None
}
}
pub fn order_moves(&self, moves: Vec<Move>) -> Vec<Move> {
let mut moves_with_eval: Vec<(Move, f32)> = moves
.iter()
.map(|m| (*m, self.eval_move(*m)))
.collect();
moves_with_eval.sort_unstable_by(|(a, a_eval), (b, b_eval)| {
if *a_eval == 0.0 && *b_eval == 0.0 {
// Prioritize equal captures over non-captures
if a.is_tactical() && !b.is_tactical() {
return Ordering::Less
}
if b.is_tactical() && !a.is_tactical() {
return Ordering::Greater
}
}
a_eval.total_cmp(b_eval).reverse()
});
moves_with_eval.iter_mut().map(|(m, _)| *m).collect()
}
pub fn negamax_search(&mut self, mut alpha: f32, beta: f32, depth_left: u8, deadline: Instant) -> (f32, Vec<Move>) {
let mut principal_variation = Vec::new();
let color = self.color();
let mut moves = self.generate_pseudolegal_moves(color);
moves = self.order_moves(moves);
match self.hash_move() {
Some(mov) => moves.insert(0, mov),
None => {},
}
if depth_left == 0 {
return (self.quiscence(alpha, beta), principal_variation);
}
for mov in moves {
let ep_target_before = self.ep_target.clone();
let castling_rights_before = self.castling_rights.clone();
let hash_before = self.hash.clone();
let captured_piece = self.make_move(mov);
if !self.is_king_in_check(color) {
let (mut score, mut subtree_pv) = self.negamax_search(-beta, -alpha, depth_left - 1, deadline);
score *= -1.;
self.unmake_move(mov, captured_piece, ep_target_before, castling_rights_before, hash_before);
if score >= beta {
self.transposition_table[(self.hash % TTABLE_SIZE) as usize] = Some(TranspositionTableItem {
hash: self.hash,
best_move: mov,
depth: depth_left, // TODO: should be actual depth searched
node_type: NodeType::Cut,
score,
});
return (beta, principal_variation);
}
if score > alpha {
alpha = score;
principal_variation = Vec::with_capacity(depth_left as usize);
principal_variation.push(mov);
principal_variation.append(&mut subtree_pv);
self.transposition_table[(self.hash % TTABLE_SIZE) as usize] = Some(TranspositionTableItem {
hash: self.hash,
best_move: mov,
depth: depth_left, // TODO: should be actual depth searched
node_type: NodeType::PV,
score,
});
} else {
self.transposition_table[(self.hash % TTABLE_SIZE) as usize] = Some(TranspositionTableItem {
hash: self.hash,
best_move: mov,
depth: depth_left, // TODO: should be actual depth searched
node_type: NodeType::All,
score,
});
}
} else {
self.unmake_move(mov, captured_piece, ep_target_before, castling_rights_before, hash_before);
}
// Could not finish in time, return what we have so far
if Instant::now() > deadline {
println!("Returning early!");
return (alpha, principal_variation)
}
}
(alpha, principal_variation)
}
pub fn quiscence(&mut self, mut alpha: f32, beta: f32) -> f32 {
let color = self.color();
let mut moves = self.generate_pseudolegal_moves(color);
moves = self.order_moves(moves);
match self.hash_move() {
Some(mov) => moves.insert(0, mov),
None => {},
}
let stand_pat = self.evaluate(Some(moves.len() as f32));
if stand_pat >= beta {
return beta;
}
if alpha < stand_pat {
alpha = stand_pat;
}
let tactical_moves = moves.iter().filter(|m| m.is_tactical());
for mov in tactical_moves {
let ep_target_before = self.ep_target.clone();
let castling_rights_before = self.castling_rights.clone();
let hash_before = self.hash.clone();
let captured_piece = self.make_move(*mov);
if !self.is_king_in_check(color) {
let evaluation = -self.quiscence(-beta, -alpha);
self.unmake_move(*mov, captured_piece, ep_target_before, castling_rights_before, hash_before);
if evaluation >= beta {
return beta; // Fail-hard beta-cutoff
}
if evaluation > alpha {
alpha = evaluation;
}
} else {
self.unmake_move(*mov, captured_piece, ep_target_before, castling_rights_before, hash_before);
}
}
alpha
}
pub fn iterative_deepening(&mut self, max_depth: u8, duration: Duration) -> (f32, Vec<Move>) {
let start = Instant::now();
let deadline = start + duration;
let mut result = None;
let mut depth = 1;
let mut alpha = -INFINITY;
let mut beta = INFINITY;
let window_size = 0.25;
while depth <= max_depth {
let search_result = self.negamax_search(alpha, beta, depth, deadline);
println!("Finished depth({}) {:?} [{:?} left]", depth, search_result, deadline - Instant::now());
if Instant::now() > deadline {
break;
}
if search_result.1.len() > 0 {
depth += 1;
alpha = search_result.0 - window_size;
beta = search_result.0 + window_size;
} else if search_result.0 <= alpha { // Alpha-cutoff
println!("Alpha cutoff {} <= {:?}", search_result.0, (alpha, beta));
beta = alpha;
alpha = search_result.0 - window_size * 4.0;
continue;
} else if search_result.0 >= beta { // Beta-cutoff
println!("Beta cutoff {:?} <= {}", (alpha, beta), search_result.0);
alpha = beta;
beta = search_result.0 + window_size * 4.0;
continue;
} else {
panic!("Can this ever be possible? (probably not)");
}
result = Some(search_result);
}
match result {
Some(r) => return r,
None => panic!("Could not find a move in time"),
}
}
}
#[cfg(test)]
mod tests {
use crate::board::{Board, engine::PerftResult, Color};
#[test]
fn perft() {
let mut board = Board::new();
assert_eq!(board.perft(0, false), PerftResult { leaf_nodes: 1, captures: 0, en_passants: 0, castles: 0 , checks: 0 });
assert_eq!(board.perft(1, false), PerftResult { leaf_nodes: 20, captures: 0, en_passants: 0, castles: 0 , checks: 0 });
assert_eq!(board.perft(2, false), PerftResult { leaf_nodes: 400, captures: 0, en_passants: 0, castles: 0 , checks: 0 });
assert_eq!(board.perft(3, false), PerftResult { leaf_nodes: 8902, captures: 34, en_passants: 0, castles: 0 , checks: 12 });
assert_eq!(board.perft(4, false), PerftResult { leaf_nodes: 197281, captures: 1576, en_passants: 0, castles: 0 , checks: 469 });
// assert_eq!(board.perft(5, false), PerftResult { leaf_nodes: 4865609, captures: 82719, en_passants: 258, castles: 0, checks: 27351 });
}
#[test]
fn position_perft() {
let fen = String::from("r3k2r/p1ppqpb1/bn2pnp1/3PN3/1p2P3/2N2Q1p/PPPBBPPP/R3K2R w KQkq - ");
let mut board = Board::from_FEN(fen);
assert_eq!(board.perft(0, false), PerftResult { leaf_nodes: 1, captures: 0, en_passants: 0, castles: 0 , checks: 0 });
assert_eq!(board.perft(1, false), PerftResult { leaf_nodes: 48, captures: 8, en_passants: 0, castles: 2 , checks: 0 });
assert_eq!(board.perft(2, false), PerftResult { leaf_nodes: 2039, captures: 351, en_passants: 1, castles: 91 , checks: 3 });
assert_eq!(board.perft(3, false), PerftResult { leaf_nodes: 97862, captures: 17102, en_passants: 45, castles: 3162, checks: 993 });
// assert_eq!(board.perft(4, false), PerftResult { leaf_nodes: 4085603, captures: 757163, en_passants: 1929, castles: 128013, checks: 25523 });
}
#[test]
fn endgame_perft() {
let fen = String::from("8/2p5/3p4/KP5r/1R3p1k/8/4P1P1/8 w - - ");
let mut board = Board::from_FEN(fen);
assert_eq!(board.perft(1, false), PerftResult { leaf_nodes: 14, captures: 1, en_passants: 0, castles: 0 , checks: 2 });
assert_eq!(board.perft(2, false), PerftResult { leaf_nodes: 191, captures: 14, en_passants: 0, castles: 0 , checks: 10 });
// assert_eq!(board.perft(3, false), PerftResult { leaf_nodes: 2182, captures: 209, en_passants: 2, castles: 0 , checks: 267 });
}
#[test]
fn material() {
let board = Board::new();
assert_eq!(board.material(Color::Black), 38.0);
assert_eq!(board.material(Color::White), 38.0);
}
}
|