1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
|
use std::cmp::Ordering;
use std::f32::INFINITY;
use crate::{moves::{Move, MoveKind}, board::io::IO};
use super::{Grossmeister, ttable::{NodeType, TTABLE_SIZE, TranspositionTableItem}};
const VALUE_WIN: f32 = 20_000.0;
#[derive(Debug, Default, PartialEq)]
pub struct PerftResult {
leaf_nodes: u64,
captures: u64,
en_passants: u64,
castles: u64,
checks: u64,
}
impl Grossmeister {
pub fn negamax_search(&mut self, mut alpha: f32, beta: f32, depth_left: u8, parent_killers: &mut Vec<Move>) -> (f32, Vec<Move>) {
let mut principal_variation = Vec::new();
let mut killer_moves = Vec::new();
let color = self.board.color();
if self.board.positions.iter().filter(|p| **p == self.board.hash).count() >= 3 {
// Draw by repetition
return (0.0, principal_variation);
}
if let Some(transposition) = self.transposition() {
if transposition.depth == depth_left {
match transposition.node_type {
NodeType::PV => { // PV-nodes have exact score
principal_variation.push(transposition.mov);
return (transposition.score, principal_variation);
}
NodeType::Cut => {
if transposition.score >= beta {
principal_variation.push(transposition.mov);
return (beta, principal_variation);
}
}
NodeType::All => {
if transposition.score <= alpha {
principal_variation.push(transposition.mov);
return (alpha, principal_variation);
}
}
}
}
}
if depth_left == 0 {
return (self.quiscence(alpha, beta), principal_variation);
}
let mut moves = self.board.generate_pseudolegal_moves();
moves = self.order_moves(moves, parent_killers.to_vec());
let mut should_pv_search = true;
let mut legal_move_found = false;
for mov in moves {
let ep_target_before = self.board.ep_target;
let castling_rights_before = self.board.castling_rights;
let hash_before = self.board.hash;
let captured_piece = self.board.make_move(mov);
if !self.board.is_king_in_check(color) {
legal_move_found = true;
let (mut score, mut subtree_pv) = if should_pv_search {
// Assume PV-node is high in the list (if move ordering is good)
self.negamax_search(-beta, -alpha, depth_left - 1, &mut killer_moves)
} else {
// After we have PV-node (that raised alpha) all other nodes will be searched
// with zero-window first to confirm this assumption
// TODO: changing 0.001 -> 0.0001 leads to a weird bug
let result = self.negamax_search(-(alpha + 0.001), -alpha, depth_left - 1, &mut killer_moves);
// In case some of the other nodes raises alpha, then it's true PV node now,
// let's research with full window to find its exact value
if -result.0 > alpha {
self.negamax_search(-beta, -alpha, depth_left - 1, &mut killer_moves)
} else {
result
}
};
score *= -1.;
self.board.unmake_move(mov, captured_piece, ep_target_before, castling_rights_before, hash_before);
if score >= beta {
self.transposition_table[(self.board.hash % TTABLE_SIZE) as usize] = Some(TranspositionTableItem {
hash: self.board.hash,
mov,
depth: depth_left, // TODO: should be actual depth searched
node_type: NodeType::Cut,
score,
});
if mov.kind == MoveKind::Quiet {
match parent_killers.iter().find(|m| **m == mov) {
None => parent_killers.push(mov),
Some(..) => {},
}
}
return (beta, principal_variation);
}
if score > alpha {
alpha = score;
should_pv_search = false; // Once we have PV-node we can start zero-window searching
principal_variation = Vec::with_capacity(depth_left as usize);
principal_variation.push(mov);
principal_variation.append(&mut subtree_pv);
self.transposition_table[(self.board.hash % TTABLE_SIZE) as usize] = Some(TranspositionTableItem {
hash: self.board.hash,
mov,
depth: depth_left, // TODO: should be actual depth searched
node_type: NodeType::PV,
score,
});
} else if self.transposition().is_none() {
self.transposition_table[(self.board.hash % TTABLE_SIZE) as usize] = Some(TranspositionTableItem {
hash: self.board.hash,
mov,
depth: depth_left, // TODO: should be actual depth searched
node_type: NodeType::All,
score,
});
}
} else {
self.board.unmake_move(mov, captured_piece, ep_target_before, castling_rights_before, hash_before);
}
// Could not finish in time, return what we have so far
if self.should_halt.load(std::sync::atomic::Ordering::SeqCst) {
break;
}
}
if !legal_move_found {
if self.board.is_king_in_check(color) {
return (-VALUE_WIN, principal_variation);
} else {
return (0.0, principal_variation);
}
}
(alpha, principal_variation)
}
pub fn quiscence(&mut self, mut alpha: f32, beta: f32) -> f32 {
let color = self.board.color();
let mut moves = self.board.generate_pseudolegal_moves();
moves = self.order_moves(moves, Vec::new());
if self.board.positions.iter().filter(|p| **p == self.board.hash).count() >= 3 {
// Draw by repetition
return 0.0;
}
if !self.board.is_king_in_check(color) {
// If we are not in check, we can evaluate stand pat
let stand_pat = self.evaluate();
if stand_pat >= beta {
return beta;
}
if alpha < stand_pat {
alpha = stand_pat;
}
// If we are not in check, we can only search tactical moves
moves.retain(|m| m.is_tactical())
}
let mut legal_move_found = false;
for mov in moves {
let ep_target_before = self.board.ep_target;
let castling_rights_before = self.board.castling_rights;
let hash_before = self.board.hash;
let captured_piece = self.board.make_move(mov);
if !self.board.is_king_in_check(color) {
legal_move_found = true;
let evaluation = -self.quiscence(-beta, -alpha);
self.board.unmake_move(mov, captured_piece, ep_target_before, castling_rights_before, hash_before);
if evaluation >= beta {
return beta; // Fail-hard beta-cutoff
}
if evaluation > alpha {
alpha = evaluation;
}
} else {
self.board.unmake_move(mov, captured_piece, ep_target_before, castling_rights_before, hash_before);
}
}
if !legal_move_found && self.board.is_king_in_check(color) {
return -VALUE_WIN
}
alpha
}
pub fn iterative_deepening(&mut self, max_depth: u8) -> (f32, Vec<Move>) {
let mut result = None;
let mut depth = 1;
let mut alpha = -INFINITY;
let mut beta = INFINITY;
let window_size = 0.25;
let mut gradual_widening_counter = 0;
let mut root_killers: Vec<Move> = Vec::new();
while depth <= max_depth {
println!("info depth {}", depth);
if self.debug {
println!("info string window {:?}", (alpha, beta));
}
let search_result = self.negamax_search(alpha, beta, depth, &mut root_killers);
if search_result.0.abs() >= VALUE_WIN {
println!("info mate {:.0}", (search_result.1.len() as f32 / 2.0).ceil(), );
result = Some(search_result);
break;
}
if self.should_halt.load(std::sync::atomic::Ordering::SeqCst) {
println!("info string halting search");
break;
}
if search_result.0 <= alpha { // Alpha-cutoff
gradual_widening_counter += 1;
beta = alpha + window_size * 0.1;
alpha = search_result.0 - window_size * 2.0f32.powi(gradual_widening_counter);
println!("info score upperbound {:.0}", beta * 100.0);
continue;
}
if search_result.0 >= beta { // Beta-cutoff
gradual_widening_counter += 1;
alpha = beta - window_size * 0.1;
beta = search_result.0 + window_size * 2.0f32.powi(gradual_widening_counter);
println!("info score lowerbound {:.0}", alpha * 100.0);
continue;
}
if !search_result.1.is_empty() {
depth += 1;
gradual_widening_counter = 0;
alpha = search_result.0 - window_size;
beta = search_result.0 + window_size;
{
print!("info score cp {:.0} pv ", search_result.0 * 100.0);
for mov in &search_result.1 {
print!("{} ", mov);
}
println!();
}
result = Some(search_result);
} else {
panic!("Why the fuck no moves?");
}
}
match result {
Some(r) => {
print!("bestmove {}", r.1[0]);
if r.1.len() > 1 {
print!(" ponder {}", r.1[1])
}
println!();
r
}
None => {
println!("info string could not find move in time");
panic!("Could not find a move in time");
}
}
}
/// Evaluate move for move ordering, prioritizing efficient captures
/// where low-value pieces capture high-value pieces
fn eval_move(&self, m: Move) -> f32 {
if m.is_tactical() {
let [source_eval, target_eval] = [m.source, m.target]
.map(|sq| self.board.piece_by_square(sq))
.map(|p| {
match p {
Some(p) => p.static_eval(),
None => 0.,
}
});
return 2. * target_eval - source_eval
}
0.0
}
pub fn order_moves(&self, moves: Vec<Move>, killer_moves: Vec<Move>) -> Vec<Move> {
let mut moves_with_eval: Vec<(Move, f32)> = moves
.iter()
.map(|m| (*m, self.eval_move(*m)))
.collect();
moves_with_eval.sort_unstable_by(|(a, a_eval), (b, b_eval)| {
if *a_eval == 0.0 && *b_eval == 0.0 {
// Prioritize equal captures over non-captures
if a.is_tactical() && !b.is_tactical() {
return Ordering::Less
}
if b.is_tactical() && !a.is_tactical() {
return Ordering::Greater
}
}
a_eval.total_cmp(b_eval).reverse()
});
let mut ordered_moves: Vec<Move> = moves_with_eval.iter().map(|(m, _)| *m).collect();
// Insert killer moves after winning captures
let equal_capture_index = moves_with_eval
.iter()
.position(|(m, eval)| m.is_tactical() && *eval == 0.0)
.unwrap_or(0);
for killer in killer_moves {
if let Some(index) = ordered_moves.iter().position(|m| *m == killer) {
let mov = ordered_moves.remove(index);
ordered_moves.insert(equal_capture_index, mov);
}
}
if let Some(transposition) = self.transposition() {
ordered_moves.insert(0, transposition.mov);
}
ordered_moves
}
pub fn perft(&mut self, depth: u8, print: bool) -> PerftResult {
let mut result = PerftResult::default();
if depth == 0 {
result.leaf_nodes = 1;
return result;
}
let color = self.board.color();
let moves = self.board.generate_pseudolegal_moves();
if print {
println!("Running perft for depth {}. Color to move is {:?}\n{} moves available", depth, color, moves.len());
println!("{} moves available", moves.len());
}
for mov in moves {
let ep_target_before = self.board.ep_target;
let castling_rights_before = self.board.castling_rights;
let hash_before = self.board.hash;
let captured_piece = self.board.make_move(mov);
// King can not be in check after our own move
if !self.board.is_king_in_check(color) {
if depth == 1 {
match mov.kind {
MoveKind::Capture => {
result.captures += 1;
}
MoveKind::EnPassant => {
result.en_passants += 1;
result.captures += 1;
}
MoveKind::Castle => {
result.castles += 1;
}
_ => {}
}
if self.board.is_king_in_check(color.flip()) {
result.checks += 1;
}
}
if print {
println!("{:?}", mov);
self.board.print();
}
let subtree_result = self.perft(depth - 1, print);
result.leaf_nodes += subtree_result.leaf_nodes;
result.captures += subtree_result.captures;
result.checks += subtree_result.checks;
result.castles += subtree_result.castles;
result.en_passants += subtree_result.en_passants;
}
self.board.unmake_move(mov, captured_piece, ep_target_before, castling_rights_before, hash_before);
}
if print {
println!("Found {} leaf nodes in this subtree (depth {})", result.leaf_nodes, depth);
}
result
}
}
#[cfg(test)]
mod tests {
use std::time::Duration;
use crate::{board::{Board, io::IO}, square::Square, moves::{Move, MoveKind}, grossmeister::{Grossmeister, search::PerftResult}};
use super::VALUE_WIN;
#[test]
fn perft() {
let board = Board::new();
let mut gm = Grossmeister::new(board);
assert_eq!(gm.perft(0, false), PerftResult { leaf_nodes: 1, captures: 0, en_passants: 0, castles: 0 , checks: 0 });
assert_eq!(gm.perft(1, false), PerftResult { leaf_nodes: 20, captures: 0, en_passants: 0, castles: 0 , checks: 0 });
assert_eq!(gm.perft(2, false), PerftResult { leaf_nodes: 400, captures: 0, en_passants: 0, castles: 0 , checks: 0 });
assert_eq!(gm.perft(3, false), PerftResult { leaf_nodes: 8902, captures: 34, en_passants: 0, castles: 0 , checks: 12 });
assert_eq!(gm.perft(4, false), PerftResult { leaf_nodes: 197281, captures: 1576, en_passants: 0, castles: 0 , checks: 469 });
// assert_eq!(board.perft(5, false), PerftResult { leaf_nodes: 4865609, captures: 82719, en_passants: 258, castles: 0, checks: 27351 });
}
#[test]
fn position_perft() {
let fen = String::from("r3k2r/p1ppqpb1/bn2pnp1/3PN3/1p2P3/2N2Q1p/PPPBBPPP/R3K2R w KQkq - ");
let board = Board::from_FEN(fen);
let mut gm = Grossmeister::new(board);
assert_eq!(gm.perft(0, false), PerftResult { leaf_nodes: 1, captures: 0, en_passants: 0, castles: 0 , checks: 0 });
assert_eq!(gm.perft(1, false), PerftResult { leaf_nodes: 48, captures: 8, en_passants: 0, castles: 2 , checks: 0 });
assert_eq!(gm.perft(2, false), PerftResult { leaf_nodes: 2039, captures: 351, en_passants: 1, castles: 91 , checks: 3 });
assert_eq!(gm.perft(3, false), PerftResult { leaf_nodes: 97862, captures: 17102, en_passants: 45, castles: 3162, checks: 993 });
// assert_eq!(board.perft(4, false), PerftResult { leaf_nodes: 4085603, captures: 757163, en_passants: 1929, castles: 128013, checks: 25523 });
}
#[test]
fn endgame_perft() {
let fen = String::from("8/2p5/3p4/KP5r/1R3p1k/8/4P1P1/8 w - - ");
let board = Board::from_FEN(fen);
let mut gm = Grossmeister::new(board);
assert_eq!(gm.perft(1, false), PerftResult { leaf_nodes: 14, captures: 1, en_passants: 0, castles: 0 , checks: 2 });
assert_eq!(gm.perft(2, false), PerftResult { leaf_nodes: 191, captures: 14, en_passants: 0, castles: 0 , checks: 10 });
// assert_eq!(board.perft(3, false), PerftResult { leaf_nodes: 2812, captures: 209, en_passants: 2, castles: 0 , checks: 267 });
}
#[test]
fn checkmate() {
let fen = String::from("2kr1b1r/pp1npppp/2p1bn2/7q/5B2/2NB1Q1P/PPP1N1P1/2KR3R w - - 0 1");
let board = Board::from_FEN(fen);
let mut gm = Grossmeister::new(board);
let (score, pv) = gm.iterative_deepening(8);
assert_eq!(score, VALUE_WIN);
assert_eq!(pv, vec![
Move { source: Square::F3, target: Square::C6, kind: MoveKind::Capture },
Move { source: Square::B7, target: Square::C6, kind: MoveKind::Capture },
Move { source: Square::D3, target: Square::A6, kind: MoveKind::Quiet },
]);
}
#[test]
fn stupid_knight_sac() {
let fen = String::from("r3k1r1/pp3ppp/1q6/2ppPn2/6P1/1PPP1P2/P1N3KP/R2QR3 b - - 0 18");
let mut board = Board::from_FEN(fen);
board.ply += 1; // TODO: remove me when FEN parsing includes side to move
let mut gm = Grossmeister::new(board);
let (_, pv) = gm.iterative_deepening(6);
assert_eq!(
pv[0],
Move { source: Square::F5, target: Square::H4, kind: MoveKind::Quiet },
"You should save this poor knight from danger!"
);
}
#[test]
fn weird_bishop_sac() {
let fen = String::from("r1b1k1nr/p4pp1/1pp1p3/4n2p/1b1qP3/1B1P3N/PPPBQPPP/RN2K2R w KQkq - 7 10");
let board = Board::from_FEN(fen);
let mut gm = Grossmeister::new(board);
let (_, pv) = gm.iterative_deepening(5);
assert_eq!(
pv[0],
Move { source: Square::C2, target: Square::C3, kind: MoveKind::Quiet },
"You should fork this bastard!"
);
}
}
|