1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
use nalgebra::{Const, DVector, Dyn, Matrix, Point as PointBase, SVector, ViewStorage};
const N: usize = 2;
pub type Scalar = f32;
pub type Vector = SVector<Scalar, N>;
pub type Point = PointBase<Scalar, N>;
#[derive(Debug)]
pub struct Particle {
pub mass: Scalar,
pub position: Point,
pub velocity: Vector,
/// Force accumulator
pub force: Vector,
}
impl Particle {
pub fn new(position: Point, mass: Scalar) -> Self {
Self {
mass,
position,
velocity: Vector::zeros(),
force: Vector::zeros(),
}
}
pub fn apply_force(&mut self, force: Vector) {
self.force += force;
}
pub fn reset_force(&mut self) {
self.force = Vector::zeros()
}
}
/// A vector of concatenated position and velocity components of each particle
#[derive(Debug)]
pub struct PhaseSpace(DVector<Scalar>);
type ParticleView<'a> = Matrix<
f32,
Const<{ PhaseSpace::PARTICLE_DIM }>,
Const<1>,
ViewStorage<'a, f32, Const<{ PhaseSpace::PARTICLE_DIM }>, Const<1>, Const<1>, Dyn>,
>;
impl PhaseSpace {
/// Each particle spans 2N elements in a vector
/// first N for position, then N more for velocity
const PARTICLE_DIM: usize = N * 2;
pub fn new(particle_count: usize) -> Self {
let dimension = particle_count * PhaseSpace::PARTICLE_DIM;
Self(DVector::<Scalar>::zeros(dimension))
}
pub fn particle_view(&self, i: usize) -> ParticleView {
self.0
.fixed_rows::<{ PhaseSpace::PARTICLE_DIM }>(i * PhaseSpace::PARTICLE_DIM)
}
pub fn set_particle(&mut self, i: usize, position: Point, velocity: Vector) {
let mut view = self
.0
.fixed_rows_mut::<{ PhaseSpace::PARTICLE_DIM }>(i * PhaseSpace::PARTICLE_DIM);
for i in 0..N {
view[i] = position[i];
view[i + N] = velocity[i];
}
}
}
#[derive(Debug)]
pub struct ParticleSystem {
pub particles: Vec<Particle>,
/// Simulation clock
pub t: Scalar,
}
impl ParticleSystem {
fn collect_phase_space(&self) -> PhaseSpace {
let mut phase_space = PhaseSpace::new(self.particles.len());
for (particle_index, particle) in self.particles.iter().enumerate() {
phase_space.set_particle(particle_index, particle.position, particle.velocity);
}
phase_space
}
fn compute_derivative(&self) -> PhaseSpace {
let mut phase_space = PhaseSpace::new(self.particles.len());
for (particle_index, particle) in self.particles.iter().enumerate() {
phase_space.set_particle(
particle_index,
particle.velocity.into(),
particle.force / particle.mass,
);
}
phase_space
}
fn scatter_phase_space(&mut self, phase_space: &PhaseSpace) {
for (particle_index, particle) in &mut self.particles.iter_mut().enumerate() {
let view = phase_space.particle_view(particle_index);
for i in 0..N {
particle.position[i] = view[i];
particle.velocity[i] = view[i + N];
}
}
}
pub fn euler_step(&mut self, dt: Scalar) {
let derivative = self.compute_derivative();
let mut state = self.collect_phase_space();
state.0 += derivative.0 * dt;
self.scatter_phase_space(&state);
self.t += dt;
}
}
#[cfg(test)]
mod tests {
use super::{Particle, ParticleSystem, PhaseSpace, Point, Scalar, Vector};
#[test]
fn test_collect_phase_space() {
let system = ParticleSystem {
particles: vec![Particle::new(Point::new(2.0, 3.0), 1.0)],
t: 0.0,
};
let phase_space = system.collect_phase_space();
assert!(
!phase_space.0.is_empty(),
"Phase space has to contain non-zero values"
);
}
#[test]
fn test_scatter_phase_space() {
let mut phase_space = PhaseSpace::new(2);
phase_space.set_particle(1, Point::new(5.0, 7.0), Vector::x());
let mut system = ParticleSystem {
particles: vec![
Particle::new(Point::new(0.0, 0.0), 1.0),
Particle::new(Point::new(0.0, 0.0), 1.0),
],
t: 0.0,
};
system.scatter_phase_space(&phase_space);
assert!(
!system.particles[1].velocity.is_empty(),
"Velocity has to be set"
);
assert!(
!system.particles[1].position.is_empty(),
"Position has to be set"
);
}
fn simulate_falling_ball(fall_time: Scalar, dt: Scalar) -> (Vector, Vector) {
let gravity = -9.8 * Vector::y();
let mut system = ParticleSystem {
particles: vec![Particle::new(Point::origin(), 1.0)],
t: 0.0,
};
let iterations = (fall_time / dt) as usize;
for _ in 0..iterations {
for particle in &mut system.particles {
particle.reset_force();
}
for particle in &mut system.particles {
particle.apply_force(gravity);
}
system.euler_step(dt);
}
let expected_velocity = gravity * fall_time; // vt
let expected_position = gravity * fall_time * fall_time / 2.0; // at^2 / 2
(
system.particles[0].position.coords - expected_position,
system.particles[0].velocity - expected_velocity,
)
}
#[test]
fn ball_should_fall() {
let (position_error, velocity_error) = simulate_falling_ball(10.0, 0.01);
assert!(position_error.norm() < 0.5, "Position error has is too high");
assert!(velocity_error.norm() < 0.5, "Velocity error has is too high");
}
}
|