use std::f32::consts::PI; use cgmath::Vector3; use cgmath::prelude::*; type Vector = Vector3; pub fn sd_sphere(point: Vector, center: Vector, radius: f32) -> f32 { (point - center).magnitude() - radius } pub fn sd_box(point: Vector, center: Vector, size: Vector) -> f32 { let diff = center - point; let q = diff.map(|n| n.abs()) - size / 2.0; return q.map(|n| n.max(0.0)).magnitude() + (q.y.max(q.z).max(q.x)).min(0.0) } pub fn sd_gear(point: Vector, time: f32, center: Vector, radius: f32, thickness: f32, turn_rate: f32) -> f32 { let mut dist: f32; let thickness_over_2 = thickness / 2.0; let thickness_over_4 = thickness / 4.0; // Ring { let cylinder_dist = (Vector::new(0.0, point.y, point.z) - center).magnitude() - (radius - thickness_over_4); dist = cylinder_dist.abs() - thickness_over_2; // Make cylinder hollow } // Teeth { let sector_angle: f32 = 2.0 * PI / 12.0; // Account for rotation with time let angle = sector_angle * time / turn_rate; let rotated_point = Vector::new( point.x, point.y * angle.cos() - point.z * angle.sin(), point.y * angle.sin() + point.z * angle.cos() ); // Map all space to the first sector let point_angle = (rotated_point.z / rotated_point.y).atan(); let angle2 = -sector_angle * (point_angle / sector_angle).round(); let mapped_point = Vector::new( rotated_point.x, (rotated_point.y * angle2.cos() - rotated_point.z * angle2.sin()).abs(), rotated_point.y * angle2.sin() + rotated_point.z * angle2.cos() ); let center = Vector { x: 0.0, y: radius + thickness_over_2, z: 0.0 }; let size = Vector::new(thickness, thickness * 2.0, thickness); // Make teeth smooth by subtracting some amount dist = dist.min(sd_box(mapped_point, center, size) - thickness_over_4); } // Take a slice dist = dist.max(point.x.abs() - thickness_over_2); return dist; }