summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authoreug-vs <eugene@eug-vs.xyz>2022-05-25 18:01:36 +0400
committereug-vs <eugene@eug-vs.xyz>2022-05-25 23:24:05 +0400
commit162641340305650b710c85f6ebace6f7a392ea1b (patch)
treeb34dc214f25775a4a06091343ae916c84a4b5a68
parentcdb1ea09b5173576d795b99debc30219072a095d (diff)
downloadCFD-SIMPLE-162641340305650b710c85f6ebace6f7a392ea1b.tar.gz
feat: correct indices
-rw-r--r--src/main.py6
-rw-r--r--src/plotter.py28
-rw-r--r--src/research.py2
-rw-r--r--src/simple.py193
4 files changed, 131 insertions, 98 deletions
diff --git a/src/main.py b/src/main.py
index cdbf16e..27620b7 100644
--- a/src/main.py
+++ b/src/main.py
@@ -1,13 +1,13 @@
from simple import SIMPLE
from research import Research
-model = SIMPLE((1, 2), (0.7, 0.5), 0.02, 120)
+model = SIMPLE((30, 30), (0, 0), 0.02, 40)
-research = Research(model, '07x05_002')
+research = Research(model, 'testing')
is_complete = research.load()
if is_complete:
research.inspect()
else:
- research.solve(preview=True, save_plot=True, save_model=True)
+ research.solve(preview=True)
diff --git a/src/plotter.py b/src/plotter.py
index c803f3f..45d95da 100644
--- a/src/plotter.py
+++ b/src/plotter.py
@@ -1,5 +1,6 @@
import numpy as np
import matplotlib.pyplot as plt
+from copy import copy
from matplotlib.patches import Rectangle
figure, axes = plt.subplots()
@@ -33,21 +34,32 @@ class Plotter:
u = u / factor
v = v / factor
+
+ shape = (model.p.shape[0] + 1, model.p.shape[1] + 1)
x, y = np.meshgrid(
- np.linspace(0, model.domain_size[1], model.shape[1]),
- np.linspace(0, model.domain_size[0], model.shape[0]),
+ np.linspace(0, shape[1] * model.step, shape[1]),
+ np.linspace(0, shape[0] * model.step, shape[0]),
)
- density = density or int((max(model.domain_size) / model.step) / 40)
+ u = copy(model.u)
+ u.resize(shape)
+ v = copy(model.v)
+ v.resize(shape)
+ p = copy(model.p)
+ p.resize(shape)
+
+ print(shape, u.shape, v.shape)
+
+ # density = density or int((max(model.domain_size) / model.step) / 40)
- plt.contourf(x, y, model.p)
+ plt.contourf(x, y, p)
# self.patch = axes.add_patch(Rectangle((0, 0), *reversed(model.bfs_size), color='gray'))
# TODO: allow using streamplot
self.plt = plt.quiver(
- x[::density, ::density],
- y[::density, ::density],
- u[::density, ::density],
- v[::density, ::density],
+ x,
+ y,
+ u,
+ v,
)
self.colorbar = plt.colorbar(label='Pressure')
diff --git a/src/research.py b/src/research.py
index d660f8e..2a59c49 100644
--- a/src/research.py
+++ b/src/research.py
@@ -34,7 +34,7 @@ class Research:
if iteration % 10 == 0 or iteration == 1:
if preview or save_plot:
- self.plotter.plot(self.model)
+ self.plotter.plot(self.model, normalize=False, density=1)
if preview:
self.plotter.show()
if save_plot:
diff --git a/src/simple.py b/src/simple.py
index 91ed1a4..b54cd38 100644
--- a/src/simple.py
+++ b/src/simple.py
@@ -2,34 +2,30 @@ import numpy as np
class SIMPLE:
- def __init__(self, domain_size, bfs_size, step, Re, alpha=0.8):
+ def __init__(self, shape, bfs_shape, step, Re, alpha=0.8):
np.set_printoptions(precision=2, floatmode="maxprec", suppress=True)
self.Re = Re
self.nu = 1 / Re
self.alpha = alpha
- self.domain_size = domain_size
- self.bfs_size = bfs_size
-
self.step = step
- self.shape = tuple(int(x / step) for x in domain_size)
- self.bfs_node_size = tuple(int(x / step) for x in bfs_size)
+ self.bfs_shape = bfs_shape
# Allocations
- self.u = self.allocate_field()
- self.u_star = self.allocate_field()
+ self.u = np.zeros(shape=(shape[0], shape[1] + 1), dtype=float)
+ self.u_star = np.zeros(shape=(shape[0], shape[1] + 1), dtype=float)
- self.v = self.allocate_field()
- self.v_star = self.allocate_field()
+ self.v = np.zeros(shape=(shape[0] + 1, shape[1]), dtype=float)
+ self.v_star = np.zeros(shape=(shape[0] + 1, shape[1]), dtype=float)
- self.p = self.allocate_field()
- self.p_star = self.allocate_field(True)
- self.p_prime = self.allocate_field()
+ self.p = np.zeros(shape=shape, dtype=float)
+ self.p_star = np.random.rand(*shape)
+ self.p_prime = np.zeros(shape=shape, dtype=float)
- self.d_e = self.allocate_field()
- self.d_n = self.allocate_field()
- self.b = self.allocate_field()
+ self.d_e = np.zeros(shape=self.u.shape, dtype=float)
+ self.d_n = np.zeros(shape=self.v.shape, dtype=float)
+ self.b = np.zeros(shape=shape, dtype=float)
def allocate_field(self, random=False):
if random:
@@ -47,7 +43,7 @@ class SIMPLE:
def assert_positive(self, value):
'''Assert that the value is nearly positive'''
- assert value > -0.1, f'WARNING: Value must be positive: {value}'
+ assert value > -1, f'WARNING: Value must be positive: {value}'
return value
def grid(self):
@@ -59,52 +55,56 @@ class SIMPLE:
def solve_momentum_equations(self):
# Momentum along X direction
- for i, j in self.grid():
- u_E = 0.5 * (self.u[i][j] + self.u[i][j + 1])
- u_W = 0.5 * (self.u[i][j] + self.u[i][j - 1])
- v_N = 0.5 * (self.v[i - 1][j] + self.v[i - 1][j + 1])
- v_S = 0.5 * (self.v[i][j] + self.v[i][j + 1])
+ for i in range(1, self.u.shape[0] - 1):
+ for j in range(1, self.u.shape[1] - 1):
+ u_W = 0.5 * (self.u[i][j] + self.u[i][j - 1])
+ u_E = 0.5 * (self.u[i][j] + self.u[i][j + 1])
+
+ v_S = 0.5 * (self.v[i][j - 1] + self.v[i][j])
+ v_N = 0.5 * (self.v[i + 1][j - 1] + self.v[i + 1][j])
- a_E = self.assert_positive(-0.5 * u_E * self.step + self.nu)
- a_W = self.assert_positive(+0.5 * u_W * self.step + self.nu)
- a_N = self.assert_positive(-0.5 * v_N * self.step + self.nu)
- a_S = self.assert_positive(+0.5 * v_S * self.step + self.nu)
+ a_E = self.assert_positive(-0.5 * u_E * self.step + self.nu)
+ a_W = self.assert_positive(+0.5 * u_W * self.step + self.nu)
+ a_N = self.assert_positive(-0.5 * v_N * self.step + self.nu)
+ a_S = self.assert_positive(+0.5 * v_S * self.step + self.nu)
- a_e = 0.5 * self.step * (u_E - u_W + v_N - v_S) + 4 * self.nu
- A_e = -self.step
+ a_e = 0.5 * self.step * (u_E - u_W + v_N - v_S) + 4 * self.nu
+ A_e = -self.step
- self.d_e[i][j] = A_e / a_e
+ self.d_e[i][j] = A_e / a_e
- self.u_star[i][j] = (
- a_E * self.u[i][j + 1] +
- a_W * self.u[i][j - 1] +
- a_N * self.u[i - 1][j] +
- a_S * self.u[i + 1][j]
- ) / a_e + self.d_e[i][j] * (self.p_star[i][j + 1] - self.p_star[i][j])
+ self.u_star[i][j] = (
+ a_E * self.u[i][j + 1] +
+ a_W * self.u[i][j - 1] +
+ a_N * self.u[i + 1][j] +
+ a_S * self.u[i - 1][j]
+ ) / a_e + self.d_e[i][j] * (self.p_star[i][j - 1] - self.p_star[i][j]) # p - p_e
# Momentum along Y direction
- for i, j in self.grid():
- u_E = 0.5 * (self.u[i][j] + self.u[i + 1][j])
- u_W = 0.5 * (self.u[i][j - 1] + self.u[i + 1][j - 1])
- v_N = 0.5 * (self.v[i - 1][j] + self.v[i][j])
- v_S = 0.5 * (self.v[i][j] + self.v[i + 1][j])
+ for i in range(1, self.v.shape[0] - 1):
+ for j in range(1, self.v.shape[1] - 1):
+ u_W = 0.5 * (self.u[i - 1][j] + self.u[i][j])
+ u_E = 0.5 * (self.u[i - 1][j + 1] + self.u[i][j + 1])
+
+ v_N = 0.5 * (self.v[i][j] + self.v[i + 1][j])
+ v_S = 0.5 * (self.v[i][j] + self.v[i - 1][j])
- a_E = self.assert_positive(-0.5 * u_E * self.step + self.nu)
- a_W = self.assert_positive(+0.5 * u_W * self.step + self.nu)
- a_N = self.assert_positive(-0.5 * v_N * self.step + self.nu)
- a_S = self.assert_positive(+0.5 * v_S * self.step + self.nu)
+ a_E = self.assert_positive(-0.5 * u_E * self.step + self.nu)
+ a_W = self.assert_positive(+0.5 * u_W * self.step + self.nu)
+ a_N = self.assert_positive(-0.5 * v_N * self.step + self.nu)
+ a_S = self.assert_positive(+0.5 * v_S * self.step + self.nu)
- a_n = 0.5 * self.step * (u_E - u_W + v_N - v_S) + 4 * self.nu
- A_n = -self.step
+ a_n = 0.5 * self.step * (u_E - u_W + v_N - v_S) + 4 * self.nu
+ A_n = -self.step
- self.d_n[i][j] = A_n / a_n
+ self.d_n[i][j] = A_n / a_n
- self.v_star[i][j] = (
- a_E * self.v[i][j + 1] +
- a_W * self.v[i][j - 1] +
- a_N * self.v[i - 1][j] +
- a_S * self.v[i + 1][j]
- ) / a_n + self.d_n[i][j] * (self.p_star[i][j] - self.p_star[i + 1][j])
+ self.v_star[i][j] = (
+ a_E * self.v[i][j + 1] +
+ a_W * self.v[i][j - 1] +
+ a_N * self.v[i + 1][j] +
+ a_S * self.v[i - 1][j]
+ ) / a_n + self.d_n[i][j] * (self.p_star[i - 1][j] - self.p_star[i][j]) # p - p_n
def apply_sides_boundary(self):
for j in range(self.shape[1]):
@@ -120,54 +120,75 @@ class SIMPLE:
self.v_star[self.bfs_node_size[0]][j] = 0
def correct_pressure(self):
- self.p_prime = self.allocate_field()
- for i, j in self.grid():
- a_E = self.assert_positive(-self.d_e[i][j] * self.step)
- a_W = self.assert_positive(-self.d_e[i][j-1] * self.step)
- a_N = self.assert_positive(-self.d_n[i-1][j] * self.step)
- a_S = self.assert_positive(-self.d_n[i][j] * self.step)
- a_P = a_E + a_W + a_N + a_S
-
- self.b[i][j] = self.step * (
- -(self.u_star[i][j] - self.u_star[i][j-1])
- + (self.v_star[i][j] - self.v_star[i-1][j])
- )
-
- self.p_prime[i][j] = (
- a_E * self.p_prime[i][j+1] +
- a_W * self.p_prime[i][j-1] +
- a_N * self.p_prime[i-1][j] +
- a_S * self.p_prime[i+1][j] +
- self.b[i][j]
- ) / a_P
+ self.p_prime = np.zeros(shape=self.p.shape, dtype=float)
+ for i in range(1, self.p.shape[0] - 1):
+ for j in range(1, self.p.shape[1] - 1):
+ a_E = 0 if j == self.p.shape[1] - 1 else self.assert_positive(-self.d_e[i][j] * self.step)
+ a_W = 0 if j == 1 else self.assert_positive(-self.d_e[i][j+1] * self.step)
+ a_N = 0 if i == self.p.shape[0] - 1 else self.assert_positive(-self.d_n[i+1][j] * self.step)
+ a_S = 0 if i == 1 else self.assert_positive(-self.d_n[i][j] * self.step)
+ a_P = a_E + a_W + a_N + a_S
+
+ self.b[i][j] = self.step * (
+ -(self.u_star[i][j] - self.u_star[i][j+1])
+ + (self.v_star[i+1][j] - self.v_star[i][j])
+ )
+
+ self.p_prime[i][j] = (
+ (a_E * self.p_prime[i][j+1] if a_E > 0 else 0) +
+ (a_W * self.p_prime[i][j-1] if a_W > 0 else 0) +
+ (a_N * self.p_prime[i+1][j] if a_N > 0 else 0) +
+ (a_S * self.p_prime[i-1][j] if a_S > 0 else 0) +
+ self.b[i][j]
+ ) / a_P
self.p = self.p_star + self.p_prime * self.alpha
self.p_star = self.p
def correct_velocities(self):
- for i, j in self.grid():
- self.u[i][j] = self.u_star[i][j] + self.d_e[i][j] * (self.p_prime[i][j + 1] - self.p_prime[i][j])
- self.v[i][j] = self.v_star[i][j] + self.d_n[i][j] * (self.p_prime[i][j] - self.p_prime[i + 1][j])
+ for i in range(self.u.shape[0]):
+ for j in range(1, self.u.shape[1] - 1):
+ self.u[i][j] = self.u_star[i][j] + self.d_e[i][j] * (self.p_prime[i][j - 1] - self.p_prime[i][j])
+
+ for i in range(1, self.v.shape[0] - 1):
+ for j in range(self.v.shape[1]):
+ self.v[i][j] = self.v_star[i][j] + self.d_n[i][j] * (self.p_prime[i - 1][j] - self.p_prime[i][j])
def iterate(self):
- self.apply_inflow_boundary()
self.solve_momentum_equations()
- self.apply_sides_boundary()
- # self.apply_bfs_boundary()
+ # Boundary
+ self.u_star[:, 0] = -self.u_star[:, 1]
+ self.v_star[:, 0] = 0
+
+ self.u_star[:, -1] = -self.u_star[:, -2]
+ self.v_star[:, -1] = 0
+
+ self.u_star[-1, :] = 1
+ self.v_star[-1, :] = -self.v_star[-2, :]
+
+ self.u_star[0, :] = 0
+ self.v_star[0, :] = -self.v_star[1, :]
+
+ self.p_star[0, 0] = 0
self.correct_pressure()
self.correct_velocities()
- # Sides (magick wtf?)
- for j in range(self.shape[1]):
- self.v[1][j] = 0
- self.v[-2][j] = 0
+ # Boundary enforce
+ self.u[:, 0] = -self.u[:, 1]
+ self.v[:, 0] = 0
+
+ self.u[:, -1] = -self.u[:, -2]
+ self.v[:, -1] = 0
+
+ self.u[-1, :] = 1
+ self.v[-1, :] = -self.v[-2, :]
- for i in range(self.shape[0]):
- self.v[i][0] = 0
- self.v[i][1] = 0
+ self.u[0, :] = 0
+ self.v[0, :] = -self.v[1, :]
+ self.p[0, 0] = 0
def avg_error(self):
return np.absolute(self.b).sum()