summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authoreug-vs <eugene@eug-vs.xyz>2022-03-22 11:07:46 +0300
committereug-vs <eugene@eug-vs.xyz>2022-03-22 11:07:46 +0300
commitfe5ea63c0902d07ac9fa9a1f5be349da6ea7f328 (patch)
tree3a9cab343b46906b0090376f9219e43eb56b0cd0
parent2de388af0dbbe410c9c7d2897f8cc8b25da9ad5a (diff)
downloadCFD-SIMPLE-fe5ea63c0902d07ac9fa9a1f5be349da6ea7f328.tar.gz
feat: add introduction chapter
-rw-r--r--src/report/report.tex4
1 files changed, 4 insertions, 0 deletions
diff --git a/src/report/report.tex b/src/report/report.tex
index aef5cfa..4790fd9 100644
--- a/src/report/report.tex
+++ b/src/report/report.tex
@@ -22,6 +22,10 @@
\tableofcontents
}
+\chapter{Введение}
+Исследование отрывных течений имеет важное значение как с фундаментальной, так и прикладной точек зрения. Примером подобного течения является движение несжимаемой вязкой жидкости в плоском канале с обратным уступом, в котором присутствуют как отрыв потока на кромке уступа с его последующим присоединением вниз по течению к нижней стенке канала, так и зона рециркуляции жидкости сразу же за уступом. Причем в зависимости от соотношения инерции течения и вязких сил таких зон рециркуляции и сопровождающих их точек отрыва и присоединения потока к стенкам канала может быть несколько. При этом задача характеризуется простотой геометрии и зависимостью решения, вообще говоря, всего от двух параметров: числа Рейнольдса $Re$ и параметра расширения потока $ER$, равного отношению полной высоты канала к высоте входного участка. Однако имеет место фактор, осложняющий задачу, — открытая выходная граница канала. Единая методология решения задач с открытыми границами, особенно для несжимаемых течений, до сих пор не создана, что и определяет общепринятую тактику локализации такой границы — чем она дальше от зоны основных возмущений потока, тем лучше.
+В силу вышеуказанных причин рассматриваемая задача является практически идеальной для тестирования и демонстрации возможностей новых вычислительных технологий, разрабатываемых для моделирования отрывных течений в полуоткрытых областях. Соответственно в литературе можно найти большое количество работ, посвященных изучению несжимаемых течений вязкой жидкости в плоском канале с обратным уступом в двумерном приближении. Большинство из них выполнено для чисел Рейнольдса, не превышающих $Re$ = 1000 (здесь и далее число Рейнольдса строится по полной высоте канала и среднемассовой входной скорости потока). Однако существует несколько публикаций, в которых стационарное решение задачи найдено для более высоких значений $Re$ , вплоть до 3000. И совсем немного статей посвящены задачам при значениях числа Рейнольдса меньше единицы вплоть до $Re$ = 10−4. Основной их целью было получение вихрей Моффатта у основания уступа, поскольку при столь низких значениях $Re$ эффект инерции потока пренебрежимо мал по сравнению с вязкими силами и, следовательно, в этом месте движение жидкости имеет чисто стоксовский характер.
+
\chapter{Постановка задачи}
\section{Схема течения}
Рассматривается движение несжимаемой вязкой жидкости с постоянными характеристиками, такими как плотность $\rho$ и динамический коэффициент вязкости $\mu$. Считается, что поток двумерный и стационарный. На рисунке в безразмерных координатах приведена схема течения: основная струя и сопутствующие вихри. В качестве характерной длины в задаче выбрана полная высота канала, в дальнейшем обозначаемая как $H$. Здесь $l_c$ и $h_c$ — соответственно безразмерные длина и высота уступа, $L$ — безразмерная длина канала, $(1 − h_c)$ — безразмерная высота входного участка канала. По определению $E_R = (1 − h_c)$.