summaryrefslogtreecommitdiff
path: root/physics/src/constraint/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'physics/src/constraint/mod.rs')
-rw-r--r--physics/src/constraint/mod.rs198
1 files changed, 114 insertions, 84 deletions
diff --git a/physics/src/constraint/mod.rs b/physics/src/constraint/mod.rs
index 15ca986..4df1c8e 100644
--- a/physics/src/constraint/mod.rs
+++ b/physics/src/constraint/mod.rs
@@ -1,135 +1,165 @@
use nalgebra::{DMatrix, DVector, RowDVector};
+use crate::algebra::{Scalar, N};
use crate::particle_system::ParticleSystem;
-use crate::algebra::{Scalar, Vector, N};
-pub mod slider;
pub mod beam;
+pub mod slider;
+pub mod subspace_distance;
-const SPRING_CONSTANT: Scalar = 0.65;
-const DAMPING_CONSTANT: Scalar = 0.85;
+pub const SPRING_CONSTANT: Scalar = 16.0;
+pub const DAMPING_CONSTANT: Scalar = 4.0;
-/// SIZE is always 3xN, but this operation can't be done at compile time yet:
-/// "generic parameters may not be used in const operations"
pub trait Constraint {
fn get_particles(&self) -> Vec<usize>;
+ /// Constraint function: C = 0 <=> constrained satisfied
fn c(&self, q: &DVector<Scalar>) -> Scalar;
- fn jacobian_prev(&self) -> RowDVector<Scalar>;
- fn set_jacobian(&mut self, jacobian: RowDVector<Scalar>);
-
- fn partial_derivative(&self, q: &DVector<Scalar>) -> RowDVector<Scalar> {
- let dq = 0.00001;
+ /// J = dC / dq
+ /// This implementation computes partial derivative via
+ /// finite differences method: stepping +-dQ along each axis
+ ///
+ /// NOTE: this is rather computationally intensive so
+ /// providing constraint-specific analytical implementation is preferred
+ fn jacobian(&self, q: &DVector<Scalar>) -> RowDVector<Scalar> {
+ let dq = 1e-10;
let mut result = RowDVector::zeros(q.len());
// The only non-zero components of derivative vector are
// the particles that this constraint affects
for particle_id in self.get_particles() {
for i in 0..N {
let index = particle_id * N + i;
- let mut a = q.clone();
- let mut b = q.clone();
- a[index] += dq;
- b[index] -= dq;
+ let mut q = q.clone();
+
+ q[index] += dq;
+ let c_a = self.c(&q);
+
+ q[index] -= 2.0 * dq;
+ let c_b = self.c(&q);
- result[index] = (self.c(&a) - self.c(&b)) / (2.0 * dq)
+ result[index] = (c_a - c_b) / (2.0 * dq)
}
}
-
result
}
- fn compute(
- &mut self,
- q: &DVector<Scalar>,
- q_prev: &DVector<Scalar>,
- dt: Scalar,
- ) -> (Scalar, Scalar, RowDVector<Scalar>, RowDVector<Scalar>) {
- let c = self.c(q);
- let c_prev = self.c(q_prev);
+ /// C' = J * q'
+ fn c_dot(&self, jacobian: &RowDVector<Scalar>, q_dot: &DVector<Scalar>) -> Scalar {
+ (jacobian * q_dot)[0]
+ }
- let c_dot = (c - c_prev) / dt;
+ /// J' = dC' / dq
+ fn jacobian_dot(&self, q: &DVector<Scalar>, q_dot: &DVector<Scalar>) -> RowDVector<Scalar> {
+ let dq = 1e-4;
+ let mut result = RowDVector::zeros(q.len());
+ // The only non-zero components of derivative vector are
+ // the particles that this constraint affects
+ for particle_id in self.get_particles() {
+ for i in 0..N {
+ let index = particle_id * N + i;
+ let mut q = q.clone();
- let jacobian = self.partial_derivative(&q);
+ q[index] += dq;
+ let j_a = self.jacobian(&q);
- let jacobian_dot = (jacobian.clone() - self.jacobian_prev()) / dt;
- self.set_jacobian(jacobian.clone());
+ q[index] -= 2.0 * dq;
+ let j_b = self.jacobian(&q);
- (c, c_dot, jacobian, jacobian_dot)
+ result[index] = (self.c_dot(&j_a, q_dot) - self.c_dot(&j_b, q_dot)) / (2.0 * dq)
+ }
+ }
+ result
}
}
impl ParticleSystem {
- pub fn enforce_constraints(&mut self, dt: Scalar) {
- if self.constraints.len() == 0 {
- return
- }
-
- let size = self.particles.len() * N;
+ /// q is a state vector - concatenated positions of particles
+ /// q' - its derivative - concatenated velocities
+ pub fn collect_q(&self) -> (DVector<Scalar>, DVector<Scalar>) {
+ let size = self.q_dim();
let mut q = DVector::zeros(size);
- let mut q_prev = DVector::zeros(size);
+ let mut q_dot = DVector::zeros(size);
for (p, particle) in self.particles.iter().enumerate() {
for i in 0..N {
q[p * N + i] = particle.position[i];
- q_prev[p * N + i] = particle.position[i] - particle.velocity[i] * dt;
+ q_dot[p * N + i] = particle.velocity[i];
}
}
- let q_dot = (q.clone() - q_prev.clone()) / dt;
-
- let mut c = DVector::zeros(self.constraints.len());
- let mut c_dot = DVector::zeros(self.constraints.len());
- let mut jacobian = DMatrix::<Scalar>::zeros(self.constraints.len(), size);
- let mut jacobian_dot = DMatrix::<Scalar>::zeros(self.constraints.len(), size);
-
- for (constraint_id, constraint) in self.constraints.iter_mut().enumerate() {
- let (value, derivative, j, jdot) = constraint.compute(&q, &q_prev, dt);
- jacobian.set_row(constraint_id, &j);
- jacobian_dot.set_row(constraint_id, &jdot);
- c[constraint_id] = value;
- c_dot[constraint_id] = derivative;
- }
-
- // println!("C {}\nC' {}", c, c_dot);
- // println!("J = {}", jacobian.clone());
- // println!("J' = {}", jacobian_dot.clone());
+ (q, q_dot)
+ }
+ /// dim(q) = #particles * N
+ fn q_dim(&self) -> usize {
+ self.particles.len() * N
+ }
- let mut w = DMatrix::zeros(size, size);
- for (i, particle) in self.particles.iter().enumerate() {
- for j in 0..N {
- *w.index_mut((i * N + j, i * N + j)) = 1.0 / particle.mass;
- }
- }
+ /// Diagonal matrix of particle masses (each repeated N times to match dim(q))
+ fn mass_matrix(&self) -> DMatrix<Scalar> {
+ DMatrix::from_diagonal(&DVector::from_iterator(
+ self.q_dim(),
+ self.particles
+ .iter()
+ .flat_map(|particle| (0..N).map(|_i| 1.0 / particle.mass)),
+ ))
+ }
- let mut forces = DVector::zeros(size);
- for (p, particle) in self.particles.iter().enumerate() {
- for i in 0..N {
- forces[p * N + i] = particle.force[i];
- }
+ pub fn enforce_constraints(&mut self) {
+ if self.constraints.len() == 0 {
+ return;
}
- let lhs = jacobian.clone() * w.clone() * jacobian.transpose();
- // println!("LHS {}", lhs);
-
- let rhs = -(jacobian_dot * q_dot
- + jacobian.clone() * w * forces
- + SPRING_CONSTANT * c
- + DAMPING_CONSTANT * c_dot);
-
- // println!("RHS {}", rhs);
+ let (q, q_dot) = self.collect_q();
+ let dim_q = self.q_dim();
+ let dim_c = self.constraints.len();
+
+ let c = DVector::from_iterator(
+ dim_c,
+ self.constraints.iter().map(|constraint| constraint.c(&q)),
+ );
+
+ let jacobian = DMatrix::from_rows(
+ &self
+ .constraints
+ .iter()
+ .map(|constraint| constraint.jacobian(&q))
+ .collect::<Vec<_>>(),
+ );
+
+ let jacobian_dot = DMatrix::from_rows(
+ &self
+ .constraints
+ .iter()
+ .map(|constraint| constraint.jacobian_dot(&q, &q_dot))
+ .collect::<Vec<_>>(),
+ );
+
+ let c_dot = &jacobian * &q_dot;
+
+ let forces = DVector::from_iterator(
+ dim_q,
+ self.particles
+ .iter()
+ .flat_map(|particle| particle.force.iter().map(|&v| v)),
+ );
+
+ let jacobian_times_w = &jacobian * self.mass_matrix();
+ let jacobian_transpose = &jacobian.transpose();
+
+ let lhs = &jacobian_times_w * jacobian_transpose;
+
+ let rhs = -(&jacobian_dot * &q_dot
+ + jacobian_times_w * &forces
+ + SPRING_CONSTANT * &c
+ + DAMPING_CONSTANT * &c_dot);
match lhs.lu().solve(&rhs) {
Some(lambda) => {
- // println!("Lambda = {}", lambda);
- let constraint_force = jacobian.transpose() * lambda;
+ let constraint_force = jacobian_transpose * lambda;
for i in 0..self.particles.len() {
- let mut force = Vector::zeros();
- for j in 0..N {
- force[j] = constraint_force[i * N + j];
- }
-
- self.particles[i].apply_force(force);
+ let force = constraint_force.fixed_rows::<N>(i * N);
+ self.particles[i].apply_force(force.into());
}
}
None => println!("Lambda not found"),