aboutsummaryrefslogtreecommitdiff
path: root/src/renderer.rs
blob: f2499f4eec6a3f731ee03ba80a1fd9f13d0ccce0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
use cgmath::prelude::*;
use cgmath::Vector3;
use ncurses::addstr;
use rayon::prelude::*;
use std::f32;
use std::sync::Arc;

use crate::Buffer;
use crate::Camera;
use crate::Object;

type Vector = Vector3<f32>;

pub struct Renderer {
    pub camera: Camera,
    pub buffer: Buffer,
    pub sdf: Arc<dyn Fn(Vector3<f32>, f32) -> f32 + Send + Sync>,
}

impl Renderer {
    pub fn new(buffer: Buffer, camera: Camera, objects: Vec<Box<dyn Object>>) -> Self {
        let sdf = move |point: Vector3<f32>, time: f32| -> f32 {
            let mut dist = f32::MAX;
            for object in objects.iter() {
                dist = dist.min(object.sdf(point, time));
            }
            dist
        };

        Self {
            buffer,
            camera,
            sdf: Arc::new(sdf),
        }
    }

    pub fn render(&self, time: f32) {
        let mut iterator = self.camera.get_screen_iterator();
        iterator.set_buffer_size(&self.buffer);

        let sdf = |point: Vector3<f32>| -> f32 { (self.sdf)(point, time) };

        let ray_dirs: Vec<Vector3<f32>> = iterator.collect();

        // Ray march in parallel
        let chars: Vec<char> = ray_dirs
            .par_iter()
            .map(|ray_dir| {
                let collision = Self::ray_march(self.camera.position, *ray_dir, &sdf);
                match collision {
                    Some(point) => Self::light_point(point, &sdf),
                    None => 0.0,
                }
            })
            .map(|brightness| {
                self.buffer.palette
                    [((1.0 - brightness) * (self.buffer.palette.len() - 1) as f32) as usize]
            })
            .collect();

        for _i in 0..self.buffer.height as usize {
            let mut row = "\n".to_string();
            for _j in 0..self.buffer.width as usize {
                let character = chars[_i * self.buffer.width as usize + _j];
                row.push(character);
            }
            addstr(&row);
        }
    }

    pub fn ray_march(
        origin: Vector,
        direction: Vector,
        sdf: &dyn Fn(Vector) -> f32,
    ) -> Option<Vector> {
        let threshold = 0.01;

        let ray = direction.normalize();
        let mut point = origin;
        let mut dist = 0.0;
        let mut count = 0;

        while dist < 15.0 && count < 50 {
            count += 1;
            dist = sdf(point);
            if dist.abs() < threshold {
                return Some(point);
            }
            point += ray * dist;
        }

        None
    }

    pub fn light_point(point: Vector, sdf: &dyn Fn(Vector) -> f32) -> f32 {
        let light = Vector::new(1.0, 1.0, -1.0);
        let ambient = 0.1;
        ambient
            + (1.0 - ambient)
                * (Self::diffuse_lighting(point, light, sdf) * 0.7
                    + Self::specular_lighting(point, light, sdf) * 0.3)
    }

    pub fn diffuse_lighting(point: Vector, light: Vector, sdf: &dyn Fn(Vector) -> f32) -> f32 {
        let mut res: f32 = 1.0;
        let mut t = 0.1;
        let k = 4.0;

        while t < 1.0 {
            let h = sdf(point - light * t);
            if h < 0.001 {
                return 0.00;
            }
            res = res.min(k * h / t);
            t += h;
        }

        res
    }

    pub fn specular_lighting(point: Vector, light: Vector, sdf: &dyn Fn(Vector) -> f32) -> f32 {
        let normal = Self::normal(point, sdf);
        let dot = -(normal.dot(light));
        dot.min(1.0).max(0.0)
    }

    pub fn normal(point: Vector, sdf: &dyn Fn(Vector) -> f32) -> Vector {
        let d = 0.001;

        let dx = Vector::unit_x() * d;
        let dy = Vector::unit_y() * d;
        let dz = Vector::unit_z() * d;

        let dist = sdf(point);

        (Vector {
            x: (sdf(point + dx) - dist),
            y: (sdf(point + dy) - dist),
            z: (sdf(point + dz) - dist),
        } / d)
            .normalize()
    }
}