1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
use cgmath::Vector3;
use cgmath::prelude::*;
use ncurses::addstr;
use std::f32;
use crate::Buffer;
use crate::Camera;
use crate::Object;
type Vector = Vector3<f32>;
pub struct Renderer<'a> {
pub camera: Box<Camera>,
pub buffer: Box<Buffer>,
pub sdf: Box<dyn Fn(Vector, f32) -> f32 + 'a>,
}
impl Renderer<'_> {
// TODO: figure out how the fuck it actually works
pub fn new(buffer: Box<Buffer>, camera: Box<Camera>, objects: Vec<Box<dyn Object>>) -> Self {
let sdf = move |point: Vector3<f32>, time: f32| -> f32 {
let mut dist: f32 = 100000.0;
for object in objects.iter() {
dist = dist.min(object.sdf(point, time));
}
dist
};
Self {
buffer,
camera,
sdf: Box::new(sdf)
}
}
pub fn render(&self, time: f32) {
let (mut ray_dir, mut step_h, mut step_v) = self.camera.get_screen_iterator();
let sdf = |point: Vector3<f32>| -> f32 {
(self.sdf)(point, time)
};
step_v /= self.buffer.height;
step_h /= self.buffer.width;
for _i in 0..self.buffer.height as usize {
ray_dir += step_v;
let mut row = "\n".to_string();
for _j in 0..self.buffer.width as usize {
ray_dir += step_h;
let collision = Self::ray_march(self.camera.position, ray_dir, &sdf);
let brightness = match collision {
Some(point) => Self::light_point(point, &sdf),
None => 0.0
};
row.push(self.buffer.palette[((1.0 - brightness) * (self.buffer.palette.len() - 1) as f32) as usize]);
}
ray_dir -= step_h * self.buffer.width;
addstr(&row);
}
}
pub fn ray_march(origin: Vector, direction: Vector, sdf: &dyn Fn(Vector) -> f32) -> Option<Vector> {
let threshold = 0.1;
let ray = direction.normalize();
let mut point = origin;
let mut dist = 0.0;
let mut count = 0;
while dist < 8.0 && count < 10 {
count += 1;
dist = sdf(point);
if dist.abs() < threshold {
return Some(point);
}
point += ray * dist;
}
return None
}
pub fn light_point(point: Vector, sdf: &dyn Fn(Vector) -> f32) -> f32 {
let light = Vector::new(1.0, 1.0, -1.0);
let ambient = 0.1;
return ambient + (1.0 - ambient) * (
Self::diffuse_lighting(point, light, sdf) * 0.7 +
Self::specular_lighting(point, light, sdf) * 0.3
)
}
pub fn diffuse_lighting(point: Vector, light: Vector, sdf: &dyn Fn(Vector) -> f32) -> f32 {
let mut res: f32 = 1.0;
let mut t = 0.1;
let k = 4.0;
while t < 1.0 {
let h = sdf(point - light * t);
if h < 0.001 {
return 0.00
}
res = res.min(k * h / t);
t += h;
}
return res
}
pub fn specular_lighting(point: Vector, light: Vector, sdf: &dyn Fn(Vector) -> f32) -> f32 {
let normal = Self::normal(point, sdf);
let dot = -(normal.dot(light));
return dot.min(1.0).max(0.0)
}
pub fn normal(point: Vector, sdf: &dyn Fn(Vector) -> f32) -> Vector {
let d = 0.001;
let dx = Vector::unit_x() * d;
let dy = Vector::unit_y() * d;
let dz = Vector::unit_z() * d;
let dist = sdf(point);
return (Vector {
x: (sdf(point + dx) - dist),
y: (sdf(point + dy) - dist),
z: (sdf(point + dz) - dist),
} / d).normalize()
}
}
|