1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
figure, axes = plt.subplots()
class SIMPLE:
def __init__(self, domain_size, bfs_size, step, Re, alpha=0.8):
np.set_printoptions(precision=2, floatmode="maxprec", suppress=True)
self.Re = Re
self.nu = 1 / Re
self.alpha = alpha
self.domain_size = domain_size
self.bfs_size = bfs_size
self.step = step
self.shape = tuple(int(x / step) for x in domain_size)
self.x, self.y = np.meshgrid(
np.linspace(0, domain_size[1], self.shape[1]),
np.linspace(0, domain_size[0], self.shape[0]),
)
self.plt = None
self.colorbar = None
self.patch = None
def allocate_field(self, random=False):
if random:
return np.random.rand(*self.shape)
return np.zeros(shape=self.shape, dtype=float)
def prep(self):
self.u = self.allocate_field()
self.u_star = self.allocate_field()
self.v = self.allocate_field()
self.v_star = self.allocate_field()
self.p = self.allocate_field()
self.p_star = self.allocate_field(True)
self.p_prime = self.allocate_field()
self.d_e = self.allocate_field()
self.d_n = self.allocate_field()
self.b = self.allocate_field()
def apply_inflow_boundary(self):
for i in range(self.shape[0]):
self.u_star[i][0] = 1
self.v_star[i][0] = 0
def assert_rule2(self, value):
'''Assert that the value is nearly positive'''
if value < -0.1:
# TODO: assert
print(f'WARNING: Value must be positive: {value}')
return value
def solve_momentum_equations(self):
# Momentum along X direction
for i in range(1, self.shape[0] - 1):
for j in range(1, self.shape[1] - 1):
u_E = 0.5 * (self.u[i][j] + self.u[i][j + 1])
u_W = 0.5 * (self.u[i][j] + self.u[i][j - 1])
v_N = 0.5 * (self.v[i - 1][j] + self.v[i - 1][j + 1])
v_S = 0.5 * (self.v[i][j] + self.v[i][j + 1])
a_E = self.assert_rule2(-0.5 * u_E * self.step + self.nu)
a_W = self.assert_rule2(+0.5 * u_W * self.step + self.nu)
a_N = self.assert_rule2(-0.5 * v_N * self.step + self.nu)
a_S = self.assert_rule2(+0.5 * v_S * self.step + self.nu)
a_e = 0.5 * self.step * (u_E - u_W + v_N - v_S) + 4 * self.nu
A_e = -self.step
self.d_e[i][j] = A_e / a_e
self.u_star[i][j] = (
a_E * self.u[i][j + 1] +
a_W * self.u[i][j - 1] +
a_N * self.u[i - 1][j] +
a_S * self.u[i + 1][j]
) / a_e + self.d_e[i][j] * (self.p_star[i][j + 1] - self.p_star[i][j])
# Momentum along Y direction
for i in range(1, self.shape[0] - 1):
for j in range(1, self.shape[1] - 1):
u_E = 0.5 * (self.u[i][j] + self.u[i + 1][j])
u_W = 0.5 * (self.u[i][j - 1] + self.u[i + 1][j - 1])
v_N = 0.5 * (self.v[i - 1][j] + self.v[i][j])
v_S = 0.5 * (self.v[i][j] + self.v[i + 1][j])
a_E = self.assert_rule2(-0.5 * u_E * self.step + self.nu)
a_W = self.assert_rule2(+0.5 * u_W * self.step + self.nu)
a_N = self.assert_rule2(-0.5 * v_N * self.step + self.nu)
a_S = self.assert_rule2(+0.5 * v_S * self.step + self.nu)
a_n = 0.5 * self.step * (u_E - u_W + v_N - v_S) + 4 * self.nu
A_n = -self.step
self.d_n[i][j] = A_n / a_n
self.v_star[i][j] = (
a_E * self.v[i][j + 1] +
a_W * self.v[i][j - 1] +
a_N * self.v[i - 1][j] +
a_S * self.v[i + 1][j]
) / a_n + self.d_n[i][j] * (self.p_star[i][j] - self.p_star[i + 1][j])
def apply_sides_boundary(self):
for j in range(self.shape[1]):
self.v_star[0][j] = 0
self.u_star[0][j] = 0
self.u_star[self.shape[0] - 1][j] = 0
self.v_star[self.shape[0] - 1][j] = 0
def apply_bfs_boundary(self):
'''Apply Backwards Facing Step boundary conditions'''
for i in range(int(self.bfs_size[0] / self.step) + 1):
for j in range(int(self.bfs_size[1] / self.step) + 1):
self.u_star[i][j] = 0
self.v_star[i][j] = 0
def correct_pressure(self):
self.p_prime = self.allocate_field()
for i in range(1, self.shape[0] - 1):
for j in range(1, self.shape[1] - 1):
a_E = self.assert_rule2(-self.d_e[i][j] * self.step)
a_W = self.assert_rule2(-self.d_e[i][j-1] * self.step)
a_N = self.assert_rule2(-self.d_n[i-1][j] * self.step)
a_S = self.assert_rule2(-self.d_n[i][j] * self.step)
a_P = a_E + a_W + a_N + a_S
self.b[i][j] = self.step * (
-(self.u_star[i][j] - self.u_star[i][j-1])
+ (self.v_star[i][j] - self.v_star[i-1][j])
)
self.p_prime[i][j] = (
a_E * self.p_prime[i][j+1] +
a_W * self.p_prime[i][j-1] +
a_N * self.p_prime[i-1][j] +
a_S * self.p_prime[i+1][j] +
self.b[i][j]
) / a_P
self.p = self.p_star + self.p_prime * self.alpha
self.p_star = self.p
def correct_velocities(self):
for i in range(1, self.shape[0] - 1):
for j in range(1, self.shape[1] - 1):
self.u[i][j] = self.u_star[i][j] + self.d_e[i][j] * (self.p_prime[i][j + 1] - self.p_prime[i][j])
self.v[i][j] = self.v_star[i][j] + self.d_n[i][j] * (self.p_prime[i][j] - self.p_prime[i + 1][j])
def apply_outflow_boundary(self):
for i in range(self.shape[0]):
self.u[i][self.shape[1] - 1] = self.u[i][self.shape[1] - 2]
self.v[i][self.shape[1] - 1] = self.v[i][self.shape[1] - 2]
def iterate(self):
self.apply_inflow_boundary()
self.solve_momentum_equations()
self.apply_sides_boundary()
self.apply_bfs_boundary()
self.correct_pressure()
self.correct_velocities()
# self.apply_outflow_boundary()
self.apply_bfs_boundary() # Is it needed?
def plot(self, normalize=False, density=1):
if self.patch:
self.patch.remove()
if self.colorbar:
self.colorbar.remove()
if self.plt:
self.plt.remove()
self.patch = axes.add_patch(Rectangle((0, 0), *reversed(self.bfs_size)))
u, v = self.u, self.v
if normalize:
factor = np.sqrt(u ** 2 + v ** 2)
u = u / factor
v = v / factor
self.plt = plt.quiver(
self.x[::density, ::density],
self.y[::density, ::density],
u[::density, ::density],
v[::density, ::density],
self.p[::density, ::density],
scale=30,
cmap='inferno'
)
self.colorbar = plt.colorbar()
plt.pause(0.0001)
|