1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
use cgmath::Matrix3;
use cgmath::Vector3;
use cgmath::prelude::*;
use ncurses::addch;
use ncurses::addstr;
use std::f32;
use std::f32::consts::PI;
use std::time::Instant;
type Vector = Vector3<f32>;
pub const HEIGHT: i32 = 60;
pub const WIDTH: i32 = HEIGHT * 3;
#[derive(Debug)]
pub struct Camera {
pub time: f32,
pub position: Vector,
pub direction: Vector,
pub up: Vector,
pub light: Vector,
pub angle: f32,
pub distance: f32,
pub brightness: f32,
pub aspect_ratio: f32,
pub speed: f32,
pub turn_rate: f32,
pub width: f32,
pub height: f32,
pub palette: Vec<char>,
}
fn softmin(left: f32, right: f32, k: f32) -> f32 {
// return left.min(right);
let h = (k-(left-right).abs()).max(0.0) / k;
return left.min(right) - h*h*k*(1.0/4.0);
}
fn sd_sphere(point: Vector, center: Vector, radius: f32) -> f32 {
(point - center).magnitude() - radius
}
fn sd_box(point: Vector, center: Vector, size: Vector) -> f32 {
let diff = center - point;
let q = diff.map(|n| n.abs()) - size / 2.0;
return q.map(|n| n.max(0.0)).magnitude() + (q.y.max(q.z).max(q.x)).min(0.0)
}
impl Camera {
pub fn sd_gear(&self, point: Vector, center: Vector, radius: f32, thickness: f32, turn_rate: f32) -> f32 {
let mut dist: f32;
let thickness_over_2 = thickness / 2.0;
let thickness_over_4 = thickness / 4.0;
// Ring
{
let cylinder_dist = (Vector::new(0.0, point.y, point.z) - center).magnitude() - (radius - thickness_over_4);
dist = cylinder_dist.abs() - thickness_over_2; // Make cylinder hollow
}
// Teeth
{
let sector_angle: f32 = 2.0 * PI / 12.0;
// Account for rotation with time
let angle = sector_angle * self.time / turn_rate;
let rotated_point = Vector::new(
point.x,
point.y * angle.cos() - point.z * angle.sin(),
point.y * angle.sin() + point.z * angle.cos()
);
// Map all space to the first sector
let point_angle = (rotated_point.z / rotated_point.y).atan();
let angle2 = -sector_angle * (point_angle / sector_angle).round();
let mapped_point = Vector::new(
rotated_point.x,
(rotated_point.y * angle2.cos() - rotated_point.z * angle2.sin()).abs(),
rotated_point.y * angle2.sin() + rotated_point.z * angle2.cos()
);
let center = Vector { x: 0.0, y: radius + thickness_over_2, z: 0.0 };
let size = Vector::new(thickness, thickness * 2.0, thickness);
// Make teeth smooth by subtracting some amount
dist = dist.min(sd_box(mapped_point, center, size) - thickness_over_4);
}
// Take a slice
dist = dist.max(point.x.abs() - thickness_over_2);
return dist;
}
pub fn sdf(&self, point: Vector) -> f32 {
self.sd_gear(point, Vector::zero(), 3.0, 0.6, 10.0)
}
pub fn render(& mut self) {
// Linear transormation operator for calculating screen position
// Assumes "initial" screen is perpendicular to OX
// and it's bottom edge is parallel to OY
let operator = Matrix3::from_cols(
self.direction * self.distance,
self.direction.cross(self.up) * self.width,
-self.up * self.height,
);
let mut ray_dir = operator * Vector::new(1.0, -0.5, -0.5); // Corner
let step_v = operator * Vector3::unit_z() / HEIGHT as f32;
let step_h = operator * Vector3::unit_y() / WIDTH as f32;
for _i in 0..HEIGHT as usize {
ray_dir += step_v;
let mut row = "\n".to_string();
for _j in 0..WIDTH as usize {
ray_dir += step_h;
let collision = self.ray_marching(self.position, ray_dir);
let brightness = match collision {
Some(point) => self.light_point(point),
None => 0.0
};
row.push(self.palette[((1.0 - brightness) * (self.palette.len() - 1) as f32) as usize]);
}
ray_dir -= step_h * WIDTH as f32;
addstr(&row);
}
}
pub fn normal(&self, point: Vector) -> Vector {
let d = 0.001;
let dx = Vector::unit_x() * d;
let dy = Vector::unit_y() * d;
let dz = Vector::unit_z() * d;
let sdf = self.sdf(point);
return (Vector {
x: (self.sdf(point + dx) - sdf),
y: (self.sdf(point + dy) - sdf),
z: (self.sdf(point + dz) - sdf),
} / d).normalize()
}
pub fn ray_marching(&self, origin: Vector, direction: Vector) -> Option<Vector> {
let threshold = 0.1;
let ray = direction.normalize();
let mut point = origin;
let mut dist = 0.0;
let mut count = 0;
while dist < 8.0 && count < 10 {
count += 1;
dist = self.sdf(point);
if dist.abs() < threshold {
return Some(point);
}
point += ray * dist;
}
return None
}
pub fn light_point(&self, point: Vector) -> f32 {
let ambient = 0.1;
return ambient + (1.0 - ambient) * (self.diffuse_lighting(point) * 0.7 + self.specular_lighting(point) * 0.3)
}
pub fn diffuse_lighting(&self, point: Vector) -> f32 {
let mut res: f32 = 1.0;
let mut t = 0.1;
let k = 4.0;
while t < 1.0 {
let h = self.sdf(point - self.light * t);
if h < 0.001 {
return 0.00
}
res = res.min(k * h / t);
t += h;
}
return res
}
pub fn specular_lighting(&self, point: Vector) -> f32 {
let normal = self.normal(point);
let dot = -(normal.dot(self.light));
return dot.min(1.0).max(0.0)
}
}
|